GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (4)
Document type
Source
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: White, Emily; Hoppe, Clara Jule Marie; Rost, Björn (2020): The Arctic picoeukaryote Micromonas pusilla benefits from ocean acidification under constant and dynamic light. Biogeosciences, 17(3), 635-647, https://doi.org/10.5194/bg-17-635-2020
    Publication Date: 2023-01-30
    Description: Compared to the rest of the globe, the Arctic Ocean is affected disproportionately by climate change. Despite these fast environmental changes, we currently know little about the effects of ocean acidification (OA) on marine key species in this area. Moreover, the existing studies typically test the effects of OA under constant, hence artificial light fields. In this study, the abundant Arctic picoeukaryote Micromonas pusilla was acclimated to current (400 μatm) and future (900 μatm) pCO2 levels under a constant as well as dynamic light, simulating more realistic light fields as experienced in the upper mixed layer. To describe and understand the responses to these drivers, growth, particulate organic carbon (POC) production, elemental composition, photophysiology and reactive oxygen species (ROS) production were analysed. M. pusilla was able to benefit from OA on various scales, ranging from an increase in growth rates to enhanced photosynthetic capacity, irrespective of the light regime. These beneficial effects were, however, not reflected in the POC production rates, which can be explained by energy partitioning towards cell division rather than biomass build-up. In the dynamic light regime, M. pusilla was able to optimise its photophysiology for effective light usage during both low and high light periods. This effective photoacclimation, which was achieved by modifications to photosystem II (PSII), imposed high metabolic costs leading to a reduction in growth and POC production rates when compared to constant light. There were no significant interactions observed between dynamic light and OA, indicating that M. pusilla was able maintain effective photoacclimation without increased photoinactivation under high pCO2. Based on these findings, M. pusilla may exhibit a robust positive response to future Arctic Ocean conditions
    Keywords: Arctic Ocean; Dynamic Light; Ocean acidification; photophysiology; Picoeukaryotes; PSII
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-30
    Keywords: Arctic Ocean; Carbon dioxide, partial pressure; Dynamic Light; Effective absorbance cross-section of photosystem II; Electron transport rate, relative, maximum; Fluorescence, hydrogen peroxide; Fluorescence, oxygen free radicals; Index; Light saturation point; Maximum light use efficiency; Non photochemical quenching; Ocean acidification; photophysiology; Photosystem II connectivity; Photosystem II re-opening rate; Picoeukaryotes; PSII; Quantum yield efficiency of photosystem II; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 440 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-19
    Keywords: Arctic Ocean; Carbon dioxide, partial pressure; Dynamic Light; Micromonas pusilla, carbon, organic, particulate per chlorophyll a; Micromonas pusilla, carbon/nitrogen ratio; Micromonas pusilla, chlorophyll a quota per cell; Micromonas pusilla, division rate; Micromonas pusilla, growth rate; Micromonas pusilla, particulate organic carbon production per cell; Micromonas pusilla, particulate organic carbon quota per cell; Micromonas pusilla, particulate organic nitrogen quota per cell; Ocean acidification; photophysiology; Picoeukaryotes; PSII; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 170 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-18
    Description: Compared to the rest of the globe, the Arctic Ocean is affected disproportionately by climate change. Despite these fast environmental changes, we currently know little about the effects of ocean acidification (OA) on marine key species in this area. Moreover, the existing studies typically test the effects of OA under constant, hence artificial, light fields. In this study, the abundant Arctic picoeukaryote Micromonas pusilla was acclimated to current (400 µatm) and future (1000 µatm) pCO2 levels under a constant as well as a dynamic light, simulating more realistic light fields as experienced in the upper mixed layer. To describe and understand the responses to these drivers, growth, particulate organic carbon (POC) production, elemental composition, photophysiology and reactive oxygen species (ROS) production were analysed. M. pusilla was able to benefit from OA on various scales, ranging from an increase in growth rates to enhanced photosynthetic capacity, irrespective of the light regime. These beneficial effects were, however, not reflected in the POC production rates, which can be explained by energy partitioning towards cell division rather than biomass build-up. In the dynamic light regime, M. pusilla was able to optimize its photophysiology for effective light usage during both low- and high-light periods. This photoacclimative response, which was achieved by modifications to photosystem II (PSII), imposed high metabolic costs leading to a reduction in growth and POC production rates when compared to constant light. There were no significant interactions observed between dynamic light and OA, indicating that M. pusilla is able to maintain effective photoacclimation without increased photoinactivation under high pCO2. Based on these findings, M. pusilla is likely to cope well with future conditions in the Arctic Ocean.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Arctic; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate, per cell; Carbon, organic, particulate/chlorophyll a ratio; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a per cell; Chlorophyta; Coast and continental shelf; Division rate; Electron transport rate, relative, maximum; EXP; Experiment; Fluorescence, hydrogen peroxide; Fluorescence, oxygen free radicals; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Index; KongsfjordenOA; Laboratory experiment; Light; Light saturation point; Maximum light use efficiency; Micromonas pusilla; Non photochemical quenching; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate organic carbon production per cell; Particulate organic nitrogen per cell; Pelagos; pH; pH, standard deviation; Photosystem II connectivity; Photosystem II re-opening rate; Phytoplankton; Plantae; Polar; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Quantum yield efficiency of photosystem II; Registration number of species; Single species; Species; Spectral irradiance, downward at 810 nm, standard deviation; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1834 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...