GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Forschungsdaten  (13)
  • OceanRep  (42)
  • Weitere  (3)
Publikationsart
Schlagwörter
Sprache
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-12-07
    Beschreibung: Based on velocity data from a long‐term moored observatory located at 0°N, 23°W we present evidence of a vertical asymmetry during the intraseasonal maxima of northward and southward upper‐ocean flow in the equatorial Atlantic Ocean. Periods of northward flow are characterized by a meridional velocity maximum close to the surface, while southward phases show a subsurface velocity maximum at about 40 m. We show that the observed asymmetry is caused by the local winds. Southerly wind stress at the equator drives northward flow near the surface and southward flow below that is superimposed on the Tropical Instability Wave (TIW) velocity field. This wind‐driven overturning cell, known as the Equatorial Roll, shows a distinct seasonal cycle linked to the seasonality of the meridional component of the south‐easterly trade winds. The superposition of vertical shear of the Equatorial Roll and TIWs causes asymmetric mixing during northward and southward TIW phases.
    Beschreibung: Plain Language Summary; Tropical Instability Waves (TIWs) are clear in satellite measurements of sea surface temperature as horizontal undulations with wavelength of the order of 1,000 km in equatorial regions of both Atlantic and Pacific Oceans. TIWs are characterized by their distinctive upper‐ocean meridional velocity structure. TIWs amplify vertical shear and thus contribute to the generation of turbulence which in turn leads to the mixing of heat and freshwater downward into the deeper ocean. In this study we show that the prevailing southerly winds in the central equatorial Atlantic drive near‐surface northward and subsurface southward flows, which are superposed on the meridional TIW velocity field. The strength of this wind driven cell is linked to the seasonal cycle of the northward component of the trade winds, peaking in boreal fall when TIWs reach their maximum amplitude. The overturning cell affects the vertical structure of the meridional velocity field and thus has impact on the generation of current shear and turbulence. We show that the overturning reduces/enhances shear during northward/southward TIW flow, an asymmetry that is consistent with independent measurements showing asymmetric mixing.
    Beschreibung: Key Points: Composites of Tropical Instability Waves at 0°N, 23°W show a surface (subsurface) velocity maximum during northward (southward) phases. Meridional wind stress forces a seasonally‐varying, shallow cross‐equatorial overturning cell‐the Equatorial Roll. The superposition of Tropical Instability Waves and Equatorial Roll causes asymmetric mixing during north‐ and southward phases.
    Beschreibung: EU H2020
    Beschreibung: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Beschreibung: US NSF
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Beschreibung: National Oceanic and Atmospheric Administration http://dx.doi.org/10.13039/100000192
    Beschreibung: National Academy of Sciences http://dx.doi.org/10.13039/100000209
    Beschreibung: National Science Foundation http://dx.doi.org/10.13039/100000001
    Beschreibung: https://doi.pangaea.de/10.1594/PANGAEA.941042
    Beschreibung: https://www.pmel.noaa.gov/tao/drupal/disdel/
    Schlagwort(e): ddc:551.5 ; tropical instability waves ; equatorial Atlantic ; equatorial roll ; moored velocity data ; ocean mixing ; ocean observations
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-08-03
    Beschreibung: The Atlantic Meridional Overturning Circulation (AMOC) influences North Atlantic climate and is responsible for relatively warm temperatures in northern Europe compared to other places at same latitudes (Cunningham et al., 2007). Therefore the exact mechanisms and reactions to external impacts and fluctuations of different parameters are very important parts of current research for the reason that a certain wind stress field could possibly give information about the future strength of the AMOC. Within the scope of this Bachelor thesis ten model runs of the Kiel Climate Model (KCM) are driven with global wind forcing by ERA40 and NCEP wind stress datasets to observe the influence of wind stress on AMOC. It shows that the Overturning Circulation has a decreasing trend during the observed period from 1958-2001, while at the same time wind stress is increasing. This opposing trend allows the assumption that other processes like heat fluxes or density driven transports superpose the influence of the wind stress and that the decadal trend of the AMOC is hardly influenced by windstress (Cunningham et al., 2007). Furthermore a negative correlation between AMOC and wind stress, meaning that an increase of AMOC would lead to a decrease in wind stress, can be excluded (Eden et al., 2001). It rather shows, that wind stress is at least partly responsible for interannual variabilities. This influence has its maximum impact with a time delay ("lag") of three years after an event in wind stress. The highest positive correlations are found in the North Atlantic region in a belt from the US east coast to the British Islands. Here an increase of the windstress curl would lead to maximum changes of AMOC transport strength with a time delay of three years. In this thesis wind driven water mass transport is described by the Ekman transport, which makes up about 10% of the total Overturning transport. The variability of Ekman transport and zonal wind fluctuations are quite strong in the northern Atlantic and can significantly influence the AMOC on interannual timescales.
    Schlagwort(e): Course of study: BSc Physics of the Earth System
    Materialart: Thesis , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-05-18
    Beschreibung: Recent evidence from mooring data in the equatorial Atlantic reveals that semi-annual and longer time scale ocean current variability is close to being resonant with equatorial basin modes. Here we show that intraseasonal variability, with time scales of 10's of days, provides the energy to maintain these resonant basin modes against dissipation. The mechanism is analogous to that by which storm systems in the atmosphere act to maintain the atmospheric jet stream. We demonstrate the mechanism using an idealised model set-up that exhibits equatorial deep jets. The results are supported by direct analysis of available mooring data from the equatorial Atlantic Ocean covering a depth range of several thousand meters. The analysis of the mooring data suggests that the same mechanism also helps maintain the seasonal variability.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-05-15
    Beschreibung: The Atlantic Subtropical Cells (STCs) are shallow wind-driven overturning circulations connecting the tropical upwelling areas with the subtropical subduction regions. In both hemispheres they are characterized by equatorward transport at thermocline level, upwelling at the equator and poleward Ekman transport in the surface layer. STCs are suggested to impact sea surface temperature variability in tropical upwelling regions on interannual to decadal time scales through the variability either in STC transport and/or hydrographic properties. Here we present a 21st century mean state of the horizontal branches of the Atlantic STCs. Argo float data and repeated ship sections show that the equatorward part of the STCs can be observed between the 26.0 kg m-3 isopycnal and a seasonally varying upper boundary (30-70 m). Transport estimates within this layer reveal that the southern hemisphere contributes about 3 times more to the transport convergence between 10°N and 10°S than the northern hemisphere. In contrast, poleward transports in the surface layer driven by the Ekman divergence are rather symmetric. Overall, a residual transport of about 3 Sv remains. This missing transport could either be linked to diapycnal transport across the 26.0 kg m-3 isopycnal, as part of the Atlantic Meridional Overturning Circulation which partly upwells in the tropics, or to uncertainties of the transport estimates, particularly at the western boundary at 10°N. From 2010 to 2017, both Ekman divergence and thermocline layer convergence between 10°N and 10°S suggest an increase in STC transport with a dominating contribution from the northern hemisphere. The observations further show opposing thermocline layer transports at the western boundary and in the interior basin that are partly compensating each other. Implications of the increase in STC transport and variability of the STC hydrographic variability in the tropical Atlantic will be discussed.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Format: video
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    In:  (Master thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 69 pp
    Publikationsdatum: 2018-11-09
    Schlagwort(e): Course of study: MSc Climate Physics
    Materialart: Thesis , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    In:  [Invited talk] In: Seminar at University of East Anglia, 28.02.2020, University of East Anglia, Norwich, UK .
    Publikationsdatum: 2020-04-20
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    In:  [Talk] In: PIRATA-24/TAV Meeting, 10.-14.05.2021, Online .
    Publikationsdatum: 2021-05-11
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2021-02-18
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2020-02-21
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    In:  [Talk] In: VII Seminar of the Bilateral Cooperation DOCEAN-GEOMAR, 28.10.2019, Recife, Brazil .
    Publikationsdatum: 2019-10-30
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...