GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (1)
Document type
  • GEOMAR Catalogue / E-Books  (1)
  • Articles  (29)
Source
Language
Years
DDC
  • 1
    Keywords: Nuclear structure. ; Electronic books.
    Description / Table of Contents: Enhanced by a number of solved problems and examples, this volume will be a valuable resource to advanced undergraduate and graduate students in chemistry, chemical engineering, biochemistry biophysics, pharmacology, and computational biology.
    Type of Medium: Online Resource
    Pages: 1 online resource (397 pages)
    Edition: 1st ed.
    ISBN: 9781000072327
    Series Statement: Foundations of Biochemistry and Biophysics Series
    DDC: 572
    Language: English
    Note: Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- Author -- Section I: Probability Theory -- 1: Probability and Its Applications -- 1.1 Introduction -- 1.2 Experimental Probability -- 1.3 The Sample Space Is Related to the Experiment -- 1.4 Elementary Probability Space -- 1.5 Basic Combinatorics -- 1.5.1 Permutations -- 1.5.2 Combinations -- 1.6 Product Probability Spaces -- 1.6.1 The Binomial Distribution -- 1.6.2 Poisson Theorem -- 1.7 Dependent and Independent Events -- 1.7.1 Bayes Formula -- 1.8 Discrete Probability-Summary -- 1.9 One-Dimensional Discrete Random Variables -- 1.9.1 The Cumulative Distribution Function -- 1.9.2 The Random Variable of the Poisson Distribution -- 1.10 Continuous Random Variables -- 1.10.1 The Normal Random Variable -- 1.10.2 The Uniform Random Variable -- 1.11 The Expectation Value -- 1.11.1 Examples -- 1.12 The Variance -- 1.12.1 The Variance of the Poisson Distribution -- 1.12.2 The Variance of the Normal Distribution -- 1.13 Independent and Uncorrelated Random Variables -- 1.13.1 Correlation -- 1.14 The Arithmetic Average -- 1.15 The Central Limit Theorem -- 1.16 Sampling -- 1.17 Stochastic Processes-Markov Chains -- 1.17.1 The Stationary Probabilities -- 1.18 The Ergodic Theorem -- 1.19 Autocorrelation Functions -- 1.19.1 Stationary Stochastic Processes -- Homework for Students -- A Comment about Notations -- References -- Section II: Equilibrium Thermodynamics and Statistical Mechanics -- 2: Classical Thermodynamics -- 2.1 Introduction -- 2.2 Macroscopic Mechanical Systems versus Thermodynamic Systems -- 2.3 Equilibrium and Reversible Transformations -- 2.4 Ideal Gas Mechanical Work and Reversibility -- 2.5 The First Law of Thermodynamics -- 2.6 Joule's Experiment -- 2.7 Entropy -- 2.8 The Second Law of Thermodynamics. , 2.8.1 Maximal Entropy in an Isolated System -- 2.8.2 Spontaneous Expansion of an Ideal Gas and Probability -- 2.8.3 Reversible and Irreversible Processes Including Work -- 2.9 The Third Law of Thermodynamics -- 2.10 Thermodynamic Potentials -- 2.10.1 The Gibbs Relation -- 2.10.2 The Entropy as the Main Potential -- 2.10.3 The Enthalpy -- 2.10.4 The Helmholtz Free Energy -- 2.10.5 The Gibbs Free Energy -- 2.10.6 The Free Energy, , H.(T,µ) -- 2.11 Maximal Work in Isothermal and Isobaric Transformations -- 2.12 Euler's Theorem and Additional Relations for the Free Energies -- 2.12.1 Gibbs-Duhem Equation -- 2.13 Summary -- Homework for Students -- References -- Further Reading -- 3: From Thermodynamics to Statistical Mechanics -- 3.1 Phase Space as a Probability Space -- 3.2 Derivation of the Boltzmann Probability -- 3.3 Statistical Mechanics Averages -- 3.3.1 The Average Energy -- 3.3.2 The Average Entropy -- 3.3.3 The Helmholtz Free Energy -- 3.4 Various Approaches for Calculating Thermodynamic Parameters -- 3.4.1 Thermodynamic Approach -- 3.4.2 Probabilistic Approach -- 3.5 The Helmholtz Free Energy of a Simple Fluid -- Reference -- Further Reading -- 4: Ideal Gas and the Harmonic Oscillator -- 4.1 From a Free Particle in a Box to an Ideal Gas -- 4.2 Properties of an Ideal Gas by the Thermodynamic Approach -- 4.3 The chemical potential of an Ideal Gas -- 4.4 Treating an Ideal Gas by the Probability Approach -- 4.5 The Macroscopic Harmonic Oscillator -- 4.6 The Microscopic Oscillator -- 4.6.1 Partition Function and Thermodynamic Properties -- 4.7 The Quantum Mechanical Oscillator -- 4.8 Entropy and Information in Statistical Mechanics -- 4.9 The Configurational Partition Function -- Homework for Students -- References -- Further Reading -- 5: Fluctuations and the Most Probable Energy -- 5.1 The Variances of the Energy and the Free Energy. , 5.2 The Most Contributing Energy E* -- 5.3 Solving Problems in Statistical Mechanics -- 5.3.1 The Thermodynamic Approach -- 5.3.2 The Probabilistic Approach -- 5.3.3 Calculating the Most Probable Energy Term -- 5.3.4 The Change of Energy and Entropy with Temperature -- References -- 6: Various Ensembles -- 6.1 The Microcanonical (petit) Ensemble -- 6.2 The Canonical (NVT) Ensemble -- 6.3 The Gibbs (NpT) Ensemble -- 6.4 The Grand Canonical (µVT) Ensemble -- 6.5 Averages and Variances in Different Ensembles -- 6.5.1 A Canonical Ensemble Solution (Maximal Term Method) -- 6.5.2 A Grand-Canonical Ensemble Solution -- 6.5.3 Fluctuations in Different Ensembles -- References -- Further Reading -- 7: Phase Transitions -- 7.1 Finite Systems versus the Thermodynamic Limit -- 7.2 First-Order Phase Transitions -- 7.3 Second-Order Phase Transitions -- References -- 8: Ideal Polymer Chains -- 8.1 Models of Macromolecules -- 8.2 Statistical Mechanics of an Ideal Chain -- 8.2.1 Partition Function and Thermodynamic Averages -- 8.3 Entropic Forces in an One-Dimensional Ideal Chain -- 8.4 The Radius of Gyration -- 8.5 The Critical Exponent ν -- 8.6 Distribution of the End-to-End Distance -- 8.6.1 Entropic Forces Derived from the Gaussian Distribution -- 8.7 The Distribution of the End-to-End Distance Obtained from the Central Limit Theorem -- 8.8 Ideal Chains and the Random Walk -- 8.9 Ideal Chain as a Model of Reality -- References -- 9: Chains with Excluded Volume -- 9.1 The Shape Exponent ν for Self-avoiding Walks -- 9.2 The Partition Function -- 9.3 Polymer Chain as a Critical System -- 9.4 Distribution of the End-to-End Distance -- 9.5 The Effect of Solvent and Temperature on the Chain Size -- 9.5.1 θ Chains in d = 3 -- 9.5.2 θ Chains in d = 2 -- 9.5.3 The Crossover Behavior Around -- 9.5.4 The Blob Picture -- 9.6 Summary -- References. , Section III: Topics in Non-Equilibrium Thermodynamics and Statistical Mechanics -- 10: Basic Simulation Techniques: Metropolis Monte Carlo and Molecular Dynamics -- 10.1 Introduction -- 10.2 Sampling the Energy and Entropy and New Notations -- 10.3 More About Importance Sampling -- 10.4 The Metropolis Monte Carlo Method -- 10.4.1 Symmetric and Asymmetric MC Procedures -- 10.4.2 A Grand-Canonical MC Procedure -- 10.5 Efficiency of Metropolis MC -- 10.6 Molecular Dynamics in the Microcanonical Ensemble -- 10.7 MD Simulations in the Canonical Ensemble -- 10.8 Dynamic MD Calculations -- 10.9 Efficiency of MD -- 10.9.1 Periodic Boundary Conditions and Ewald Sums -- 10.9.2 A Comment About MD Simulations and Entropy -- References -- 11: Non-Equilibrium Thermodynamics-Onsager Theory -- 11.1 Introduction -- 11.2 The Local-Equilibrium Hypothesis -- 11.3 Entropy Production Due to Heat Flow in a Closed System -- 11.4 Entropy Production in an Isolated System -- 11.5 Extra Hypothesis: A Linear Relation Between Rates and Affinities -- 11.5.1 Entropy of an Ideal Linear Chain Close to Equilibrium -- 11.6 Fourier's Law-A Continuum Example of Linearity -- 11.7 Statistical Mechanics Picture of Irreversibility -- 11.8 Time Reversal, Microscopic Reversibility, and the Principle of Detailed Balance -- 11.9 Onsager's Reciprocal Relations -- 11.10 Applications -- 11.11 Steady States and the Principle of Minimum Entropy Production -- 11.12 Summary -- References -- 12: Non-equilibrium Statistical Mechanics -- 12.1 Fick's Laws for Diffusion -- 12.1.1 First Fick's Law -- 12.1.2 Calculation of the Flux from Thermodynamic Considerations -- 12.1.3 The Continuity Equation -- 12.1.4 Second Fick's Law-The Diffusion Equation -- 12.1.5 Diffusion of Particles Through a Membrane -- 12.1.6 Self-Diffusion -- 12.2 Brownian Motion: Einstein's Derivation of the Diffusion Equation. , 12.3 Langevin Equation -- 12.3.1 The Average Velocity and the Fluctuation-Dissipation Theorem -- 12.3.2 Correlation Functions -- 12.3.3 The Displacement of a Langevin Particle -- 12.3.4 The Probability Distributions of the Velocity and the Displacement -- 12.3.5 Langevin Equation with a Charge in an Electric Field -- 12.3.6 Langevin Equation with an External Force-The Strong Damping Velocity -- 12.4 Stochastic Dynamics Simulations -- 12.4.1 Generating Numbers from a Gaussian Distribution by CLT -- 12.4.2 Stochastic Dynamics versus Molecular Dynamics -- 12.5 The Fokker-Planck Equation -- 12.6 Smoluchowski Equation -- 12.7 The Fokker-Planck Equation for a Full Langevin Equation with a Force -- 12.8 Summary of Pairs of Equations -- References -- 13: The Master Equation -- 13.1 Master Equation in a Microcanonical System -- 13.2 Master Equation in the Canonical Ensemble -- 13.3 An Example from Magnetic Resonance -- 13.3.1 Relaxation Processes Under Various Conditions -- 13.3.2 Steady State and the Rate of Entropy Production -- 13.4 The Principle of Minimum Entropy Production-Statistical Mechanics Example -- References -- Section IV: Advanced Simulation Methods: Polymers and Biological Macromolecules -- 14: Growth Simulation Methods for Polymers -- 14.1 Simple Sampling of Ideal Chains -- 14.2 Simple Sampling of SAWs -- 14.3 The Enrichment Method -- 14.4 The Rosenbluth and Rosenbluth Method -- 14.5 The Scanning Method -- 14.5.1 The Complete Scanning Method -- 14.5.2 The Partial Scanning Method -- 14.5.3 Treating SAWs with Finite Interactions -- 14.5.4 A Lower Bound for the Entropy -- 14.5.5 A Mean-Field Parameter -- 14.5.6 Eliminating the Bias by Schmidt's Procedure -- 14.5.7 Correlations in the Accepted Sample -- 14.5.8 Criteria for Efficiency -- 14.5.9 Locating Transition Temperatures -- 14.5.10 The Scanning Method versus Other Techniques. , 14.5.11 The Stochastic Double Scanning Method.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...