GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (1)
Document type
Source
Keywords
Language
Years
DDC
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Peptides. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (392 pages)
    Edition: 1st ed.
    ISBN: 9780081008522
    DDC: 610.28/4
    Language: English
    Note: Front Cover -- Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair -- Copyright -- Contents -- Contributors -- Preface -- Peptides and proteins as biomaterials for tissue regeneration and repair -- Chapter 1: Fundamentals of protein and cell interactions in biomaterials -- 1.1 Fundamentals of protein adsorption on biomaterials -- 1.1.1 Basics of protein adsorption -- 1.1.1.1 Function and structural organization -- 1.1.1.2 Structure and orientation of adsorbed proteins -- 1.1.2 Interactions with the surface: hydrophobic and electrostatic bonding -- 1.1.3 Kinetics of protein adsorption -- 1.1.4 Conformational changes and stability -- 1.1.5 Reversibility of protein adsorption -- 1.1.6 Competitive adsorption behavior -- 1.2 Biomaterial surface properties and their effect on protein adsorption -- 1.2.1 Promoting protein adsorption: Osseointegration -- 1.2.2 Preventing protein adsorption: Hemocompatibility -- 1.3 Quantification of protein adsorption -- 1.3.1 Optical -- 1.3.1.1 Ellipsometry -- 1.3.1.2 Surface plasmon resonance -- 1.3.2 Spectroscopic -- 1.3.2.1 Fluorescent spectroscopy -- 1.3.2.2 Infrared absorption spectroscopy -- 1.3.3 Microscopic -- 1.3.3.1 Atomic force microscopy (AFM) -- 1.3.4 Radiolabeling -- 1.3.5 Quartz crystal microbalance with dissipation monitoring (QCM-D) -- 1.4 The importance of adsorbed proteins in the tissue reaction to biomaterials -- 1.4.1 Effect of adsorbed proteins on cell adhesion -- 1.4.2 Effect of adsorbed proteins on cell activation -- 1.4.3 Effect of adsorbed proteins on the FBR -- 1.5 Quantification/detection of cell adhesion and activation -- 1.5.1 Cell adhesion -- 1.5.1.1 Micropatterning -- 1.5.1.2 Three-dimensional traction force microscopy (3D-TFM) -- 1.5.1.3 QCM-D -- 1.5.1.4 Microfluidic -- 1.5.1.5 AFM -- 1.5.2 Cell activation -- 1.5.2.1 Fluorescence microscopy -- 1.5.2.2 Flow cytometry. , 1.5.2.3 Enzyme-linked immunosorbent assay (ELISA) -- 1.6 Concluding remarks -- References -- Chapter 2: Extracellular matrix constitution and function for tissue regeneration and repair -- 2.1 An overview of ECM structure and function -- 2.1.1 Architectural role -- 2.1.2 Adhesion mediator -- 2.1.3 Mechanosensor -- 2.1.4 Growth factor reservoir and modulator of signaling peptides -- 2.2 Major ECM components -- 2.2.1 Collagen -- 2.2.2 Proteoglycans -- 2.2.3 Other ECM molecules -- 2.2.4 Matrix-degrading enzymes -- 2.3 ECM dynamics in development -- 2.3.1 General aspects/processes -- 2.3.1.1 Embryogenesis -- 2.3.1.2 Branching morphogenesis -- 2.3.1.3 Stem cell niches and stem cell differentiation -- 2.3.1.4 Homeostasis -- 2.3.2 How systems work -- 2.3.2.1 ECM in nervous system development -- 2.3.2.2 Skeletal development -- 2.3.2.3 Skin development -- 2.4 ECM remodeling in regeneration and repair -- 2.4.1 Intervertebral disc regeneration -- 2.4.2 Wound healing -- 2.4.3 Bone remodeling and healing -- 2.4.4 CNS regeneration and repair -- 2.5 Conclusions -- References -- Chapter 3: Surface functionalization of biomaterials for bone tissue regeneration and repair -- 3.1 General introduction and chapter overview -- 3.2 Principles of surface biofunctionalization for bone repair -- 3.2.1 Mimicking bone ECM with peptides and proteins -- 3.2.1.1 Integrin signaling -- 3.2.1.2 Growth factor signaling -- 3.2.2 Ligands used for biofunctionalization -- 3.2.2.1 Limitations of proteins -- 3.2.2.2 Limitations of synthetic peptides -- 3.3 RGD peptidomimetics as surface coating molecules -- 3.3.1 Cyclic peptides and modifications of the peptide structure -- 3.3.2 Design of nonpeptidic integrin-binding ligands -- 3.3.3 Examples of surface functionalization with avß3- or a5ß1-selective peptidomimetics -- 3.4 Multifunctionality on biomaterials. , 3.4.1 Combining multiple biological cues-toward highly bioactive biomaterials -- 3.4.1.1 Multifunctional approaches (I): Improving cell adhesion -- 3.4.1.2 Multifunctional approaches (II): Mimicking the ECM microenvironment -- 3.4.1.3 Multifunctional approaches (III): Winning the race for the surface -- 3.4.2 Systems of presentation -- 3.4.2.1 Peptide mixtures -- 3.4.2.2 Peptide oligomers and constructs -- 3.4.2.3 Engineered protein fragments -- 3.4.2.4 Growth factor recruiting systems -- 3.4.2.5 Functionalized (antifouling) polymers -- 3.4.2.6 Functionalized drug-releasing polymers -- 3.4 Conclusions and future perspectives -- References -- Chapter 4: Bioengineered peptide-functionalized hydrogels for tissue regeneration and repair -- 4.1 Introduction -- 4.1.1 Structural and compositional features of the native extracellular matrix -- 4.2 Hydrogels as ECM mimics -- 4.2.1 Bioactive and bioinert hydrogels -- 4.3 Bioengineered hydrogels -- 4.3.1 Biofunctionalization of hydrogels with bioactive peptides -- 4.3.1.1 Hydrogel conjugation with integrin-binding peptides -- 4.3.1.2 Hydrogel conjugation with protease-sensitive peptides -- 4.3.1.3 Hydrogel conjugation with proangiogenic peptides -- 4.3.1.4 Hydrogel conjugation with differentiation-inducer peptides -- 4.3.1.5 Hydrogel conjugation with GAG-binding peptides -- 4.4 Balancing biochemical and biomechanical cues in hydrogel-based matrices -- 4.5 Dynamically switchable peptide-functionalized hydrogels -- 4.6 General conclusions and future directions -- Acknowledgments -- References -- Chapter 5: Collagen-based biomaterials for tissue regeneration and repair -- 5.1 Introduction -- 5.2 Structure and function of collagen -- 5.3 Manufacturing and fabrication of collagen-based biomaterials -- 5.3.1 Isolation of collagen -- 5.3.2 Freeze-drying -- 5.3.3 Electrospinning -- 5.3.4 3D bioprinting. , 5.3.5 Cross-linking -- 5.3.5.1 Dehydrothermal treatment -- 5.3.5.2 Ultraviolet radiation -- 5.3.5.3 Glutaraldehyde -- 5.3.5.4 Carbodiimides -- 5.3.5.5 Microbial transglutaminase -- 5.4 Functionalized collagen-based biomaterials for tissue regeneration -- 5.4.1 Composite scaffolds -- 5.4.2 Cell-based therapies -- 5.4.3 Growth factor and recombinant protein delivery -- 5.4.4 Gene-activated matrices -- 5.5 State of the art and future trends -- References -- Chapter 6: Fibrin biomaterials for tissue regeneration and repair -- 6.1 Introduction -- 6.2 Fibrin(ogen) structure -- 6.3 Fibrin polymerization -- 6.4 Overview of fibrin's role in promoting cell infiltration during wound repair -- 6.5 Fibrin-cell interactions -- 6.6 Impact of cells on fibrin network formation and properties -- 6.7 Fibrin and inflammation -- 6.8 Fibrin and angiogenesis -- 6.9 Overview of fibrin biomaterials and current clinical uses -- 6.10 Fibrin as a tissue sealant -- 6.11 Engineering the properties of fibrin networks -- 6.12 Mechanical modification of stiffness/elasticity -- 6.13 Modification of degradation properties -- 6.14 Modification with growth factors -- 6.15 Summary and future outlooks -- References -- Chapter 7: Fibrous protein-based biomaterials (silk, keratin, elastin, and resilin proteins) for tissue regeneration and repair -- 7.1 Introduction -- 7.2 Biopolymer-gels based on fibrous proteins: General considerations -- 7.3 Silk fibroin -- 7.3.1 Protein structure -- 7.3.2 Extraction and purification -- 7.3.3 Hydrogels formation -- 7.3.4 Applications in tissue repair and regeneration -- 7.4 Keratins -- 7.4.1 Protein structure -- 7.4.2 Extraction and purification -- 7.4.3 Hydrogel formation -- 7.4.4 Applications in tissue repair and regeneration -- 7.4.4.1 Nerve regeneration -- 7.4.4.2 Wound dressing -- 7.4.4.3 Hemostatic agent -- 7.4.4.4 Cartilage tissue engineering. , 7.4.4.5 Controlled drug delivery system -- 7.4.4.6 Cell culture systems -- 7.5 Elastin -- 7.5.1 Protein structure -- 7.5.2 Extraction and purification -- 7.5.3 Hydrogel formation -- 7.5.4 Application in tissue repair and regeneration -- 7.6 Resilin -- 7.6.1 Protein structure -- 7.6.2 Protein extraction and purification -- 7.6.3 Hydrogel formation -- 7.6.4 Application on tissue repair and regeneration -- 7.7 Final remarks and future perspectives -- References -- Further reading -- Chapter 8: Fabrication of nanofibers and nanotubes for tissue regeneration and repair -- 8.1 Introduction -- 8.2 Nanofibers from organic materials -- 8.2.1 Electrospinning -- 8.2.2 Self-assembly -- 8.2.3 Phase separation -- 8.2.4 Other processing techniques -- 8.3 Inorganic nanofibers -- 8.4 Nanotubes -- 8.5 Nanocomposites -- 8.6 Conclusions -- References -- Further reading -- Chapter 9: Peptide and protein printing for tissue regeneration and repair -- 9.1 Introduction -- 9.2 Contact printing technologies -- 9.2.1 Reactive microcontact printing -- 9.2.2 Supramolecular microcontact printing -- 9.2.3 Dip pen nanolithography -- 9.2.4 Polymer pen lithography -- 9.2.5 Transfer printing -- 9.3 Printing applications in biology and medicine -- 9.3.1 Biomaterial microarrays -- 9.3.2 ECM microarrays to control cell shape -- 9.3.3 Shape-induced stem cell differentiation -- 9.3.4 Printed arrays for neurons -- 9.3.5 Peptide arrays in cartilage research -- 9.3.6 Antiinflammation by printed micropatterns -- 9.3.7 Drug delivery from arrays -- 9.3.8 Biomembrane modeling -- 9.4 Conclusion and outlook -- Acknowledgments -- References -- Chapter 10: Self-assembling peptides and their application in tissue engineering and regenerative medicine -- 10.1 Introduction -- 10.2 Common secondary structure of proteins and peptides -- 10.2.1 α-Helix -- 10.2.2 Coiled-coil helix -- 10.2.3 ß-Sheet. , 10.2.4 ß-Hairpins.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...