GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • GEOMAR Katalog / E-Books  (3)
Publikationsart
  • GEOMAR Katalog / E-Books  (3)
Datenquelle
Sprache
Erscheinungszeitraum
DDC
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    Schlagwort(e): Photocatalysis. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (796 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128242025
    DDC: 660/.2995
    Sprache: Englisch
    Anmerkung: Front cover -- Half title -- Title -- Copyright -- Contents -- Chapter 1 Novel photocatalytic techniques for organic dye degradation in water -- 1.1 An overview of dye pollution and classification -- 1.2 Existing treatment options -- 1.3 Photocatalysis: basic principle -- 1.4 Novel photocatalytic approaches -- 1.4.1 Titanium dioxide and strategies for improving photoactivity of TiO2 -- 1.4.2 Metal oxides/sulfide/nanocomposites -- 1.4.3 Layered nanocomposites -- 1.5 Mechanisms of photocatalysis: schemes involved in photocatalytic degradation -- 1.6 Type-II heterostructure semiconductors -- 1.6.1 p-n junction semiconductor -- 1.6.2 Z-scheme semiconductor -- 1.7 Factors affecting photocatalysis/photodegradation -- 1.7.1 Effect of pH -- 1.7.2 Effect of irradiation intensity -- 1.7.3 Effect of temperature -- 1.7.4 Effect of photocatalyst loading -- 1.8 Conclusion -- Acknowledgments -- References -- Chapter 2 Effect of operating parameters on photocatalytic degradation of dyes by using graphitic carbon nitride -- 2.1 Introduction -- 2.1.1 Photocatalysis -- 2.1.2 Photocatalyst -- 2.2 Graphitic carbon nitride (g - C3N4) photocatalyst -- 2.2.1 Synthesis techniques of g - C3N4 -- 2.2.2 Modifications of g - C3N4 -- 2.2.3 Composites of g - C3N4 -- 2.3 Degradation of dyes -- 2.4 Operating parameters in photocatalytic degradation -- 2.4.1 Effect of pH -- 2.4.2 Effect of catalyst concentration -- 2.4.3 Effect of light intensity -- 2.4.4 Effect of irradiation time -- 2.4.5 Effect of oxidizing agents -- 2.5 Conclusion -- References -- Chapter 3 Photocatalytic degradation of organic dyes using heterogeneous catalysts -- 3.1 Introduction -- 3.1.1 Types of dyes -- 3.1.2 Type of photocatalysts used -- 3.2 TiO2 catalyst -- 3.2.1 Principle of TiO2 photocatalysis and mechanistic pathways -- 3.2.2 Parameters affecting the photocatalytic degradation. , 3.2.3 Modification of TiO2 -- 3.3 ZnO as catalyst -- 3.3.1 Principle of ZnO photocatalysis and mechanistic pathways -- 3.3.2 Parameters affecting the photocatalytic degradation -- 3.3.3 Modification of ZnO -- 3.4 Other photocatalyst -- 3.5 Degradation study of dyes -- 3.6 Conclusion and outlook -- References -- Chapter 4 Effective materials in the photocatalytic treatment of dyestuffs and stained wastewater -- 4.1 Introduction -- 4.2 Various techniques used for removal of dye from wastewater -- 4.2.1 Adsorption technique -- 4.2.2 Ion exchange -- 4.2.3 Membrane filtration technique -- 4.2.4 Electrochemical method -- 4.2.5 Bioremediation and biodegradation -- 4.2.6 Advanced oxidation process -- 4.3 Photocatalysis -- 4.3.1 Mechanism of photocatalysis -- 4.3.2 Influences of several parameters on photocatalysis -- 4.4 Various dyes that can be treated by photolysis -- 4.4.1 Methylene blue -- 4.4.2 Methyl orange -- 4.4.3 Rhodamine B -- 4.4.4 Malachite green -- 4.4.5 Indigo carmine -- 4.5 Future Scope -- References -- Chapter 5 Sonophotocatalytic degradation of refractory textile dyes -- 5.1 Introduction -- 5.2 Sonochemical process -- 5.3 Photocatalytic process -- 5.4 Sonophotocatalytic reactors -- 5.5 Dyes degradation by sonophotocatalysis -- 5.6 Does sonoluminescence activate photocatalyst? -- 5.7 Source of synergism in sonophotocatalysis -- 5.8 Influencing factors -- 5.8.1 Ultrasonic power -- 5.8.2 Catalyst dosage -- 5.8.3 Dye concentration -- 5.8.4 Solution pH -- 5.8.5 Saturation gases -- 5.8.6 Effect of additives -- 5.9 Conclusions and future perspectives -- References -- Chapter 6 High photocatalytic activity under visible light for dye degradation -- 6.1 Introduction -- 6.2 Fundamentals of photocatalytic dye-degradation reactions -- 6.2.1 Photocatalytic dye degradation reactions mechanism -- 6.2.2 Photocatalytic dye-degradation measurement techniques. , 6.3 Different factors affecting photocatalytic dye degradation -- 6.4 Syntheses of UV-Visible/visible light active photocatalysts -- 6.4.1 Synthesis of TiO2@C nanocomposites -- 6.4.2 Synthesis of MoS2 nanoplatelets, nanorods, and nanosheets -- 6.4.3 Synthesis of flower-like ZnO@MoS2 heterostructures (ZMH) -- 6.5 Structural, optical, and methylene blue dye degradation properties -- 6.5.1 TiO2@C nanocomposites -- 6.5.2 Different MoS2 nanostructures -- 6.5.3 Flower-like ZnO@MoS2 nanostructures -- 6.6 Conclusion -- Acknowledgment -- References -- Chapter 7 Green and sustainable methods of syntheses of photocatalytic materials for efficient application in dye degradation -- 7.1 Introduction -- 7.2 Environmental concern of organic toxic pollutants -- 7.3 Semiconductor nanomaterials as photocatalyst -- 7.3.1 Strategies for improvement of photocatalytic Performance of Semiconductor nanomaterials -- 7.4 Limitations of traditional synthesis methods -- 7.5 Green approach for synthesis of ZnO-based composites materials -- 7.6 Laboratory syntheses of ZnO nanoparticles -- 7.6.1 Phase determination by XRD and morphology analyses -- 7.6.2 Raman data analysis -- 7.6.3 XPS and FTIR data analyses -- 7.6.4 Optical properties of the nanocomposite materials -- 7.7 Photocatalytic mechanism -- 7.7.1 Sun Light-driven photocatalytic dye degradation activity -- 7.8 Several applications of ZnO and ZnO-rGO nanocomposites -- 7.8.1 Self-cleaning property of cotton fabric under sunlight -- 7.8.2 Self-cleaning property of cotton fabric with different cleaning agents under sunlight -- 7.9 Summary -- 7.10 Conclusions and future scope -- Acknowledgement -- References -- Chapter 8 Hybrid systems to improve photo-based processes and their importance in the dye degradation -- 8.1 Introduction -- 8.2 Hybrid systems -- 8.2.1 Common operational aspects effect. , 8.2.2 Photocatalysis-oxidant addition -- 8.2.3 Fenton-photocatalysis -- 8.2.4 Photocatalysis-electro -- 8.2.5 Photocatalysis-electro-Fenton -- 8.2.6 Sono-photocatalysis -- 8.2.7 Adsorption-photocatalysis -- 8.2.8 Membrane-photocatalysis -- 8.2.9 Photocatalysis-biodegradation -- 8.3 General considerations -- 8.3.1 Hybrid process selection -- 8.3.2 Scale-up considerations -- 8.4 Conclusions -- References -- Chapter 9 Photocatalytic metal nanoparticles: a green approach for degradation of dyes -- 9.1 Introduction -- 9.2 Green synthesis of Zinc oxide (ZnO) NPs -- 9.3 Green synthesis of titanium dioxide (TiO2) NPs -- 9.4 Green synthesis of Copper oxide (CuO/Cu2O) NPs -- 9.5 Photocatalytic degradation of toxic dyes -- 9.6 Application of photocatalysts -- 9.7 Mechanism of dye degradation -- 9.7.1 pH -- 9.7.2 Light intensity and irradiation time -- 9.7.3 Photocatalysts load -- 9.7.4 Initial dye concentration -- 9.7.5 Temperature -- 9.8 The bottlenecks of photocatalytic dye degradation using NPs -- 9.9 Reusability of NPs -- 9.10 Aggregation of NPs -- 9.11 Toxicity of NPs -- 9.12 Hybrid systems for dye removal -- 9.13 Conclusions -- References -- Chapter 10 A facile biogenic-mediated synthesis of Ag nanoparticles over anchored ZnO for enhanced photocatalytic degradation of organic dyes -- 10.1 Introduction -- 10.2 Materials and methods -- 10.2.1 Materials -- 10.2.2 Preparation of bark extract -- 10.2.3 Green synthesis of Ag@ZnO -- 10.2.4 Characterization -- 10.2.5 Photocatalytic activity -- 10.2.6 Reuse and recyclability test -- 10.3 Results and discussion -- 10.3.1 Characterization of the catalyst -- 10.3.2 Photocatalytic degradation study -- 10.3.3 Stability and reuse study -- 10.3.4 Plausible photocatalytic reaction mechanism of MB and CR dye degradation -- 10.4 Conclusion -- Acknowledgments -- References. , Chapter 11 Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes -- 11.1 Introduction -- 11.2 Problems associated with dyes -- 11.3 Green synthesis and characterization of nanoparticles -- 11.3.1 Characterization techniques -- 11.3.2 UV-visible spectroscopy -- 11.3.3 X-ray diffraction (XRD) -- 11.3.4 Fourier transform infrared (FTIR) spectroscopy -- 11.3.5 Atomic force microscopy (AFM) -- 11.3.6 Scanning electron microscopy (SEM) -- 11.3.7 Transmission electron microscopy (TEM) -- 11.4 Metallic nanoparticles -- 11.5 Fungal-mediated nanoparticles synthesis -- 11.6 Plant-mediated nanoparticles synthesis -- 11.7 Mechanism of dye degradation by metal nanoparticles -- 11.7.1 Direct photocatalytic degradation -- 11.7.2 Indirect or sensitization-mediated degradation -- 11.8 Factors influencing degradation of dyes -- 11.8.1 pH -- 11.8.2 Concentration of nanoparticles -- 11.8.3 Temperature -- 11.8.4 Irradiation time and light intensity -- 11.8.5 Concentration of dyes -- 11.9 Applications of nanoparticles in dye degradation -- 11.9.1 Fungal-mediated nanoparticles in dye degradation -- 11.9.2 Plant-mediated nanoparticles in dye degradation -- 11.10 Challenges -- 11.11 Conclusion -- References -- Chapter 12 Heterogeneous photocatalysis of organic dyes -- 12.1 Introduction -- 12.2 Background -- 12.2.1 Types/categories of dyes -- 12.2.2 Advancement in degradation of organic dye under heterogeneous photocatalysis -- 12.3 The semiconductor surface for dye adsorption in dark -- 12.4 Dark adsorption of dyes and its efficiency -- 12.5 Photocatalyst details -- 12.5.1 Titanium dioxide -- 12.5.2 Other semiconductors -- 12.6 Photoreactor configurations -- 12.7 Photodecolorization of dye organics -- 12.7.1 Process variables and mechanism for absorption of light by semiconductor. , 12.7.2 Advanced oxidation processes incorporation with sonolysis.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    Schlagwort(e): Electrochemistry-Materials. ; Metal-organic frameworks-Industrial applications. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (290 pages)
    Ausgabe: 1st ed.
    ISBN: 9780323907859
    DDC: 541/.37
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Dyes and dyeing-Chemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (287 pages)
    Ausgabe: 1st ed.
    ISBN: 9783031089916
    Serie: Environmental Science and Engineering Series
    DDC: 541.395
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- 1 Dyes and Pigments: Interventions and How Safe and Sustainable Are Colors of Life!!! -- 1.1 Introduction -- 1.1.1 Ancient History of Uses of Dyes -- 1.2 Classification of Dyes -- 1.2.1 Natural Dyes -- 1.2.2 Synthetic Dye -- 1.2.3 Pigments -- 1.3 Application of Dyes -- 1.3.1 In Textile Sector -- 1.3.2 In Food Industry or Food Supply Chain -- 1.3.3 In Packaging and allied Sectors -- 1.3.4 In Cosmetic Sector -- 1.4 Toxic Implications Production and Discharge to Effluents -- 1.5 Guidelines -- 1.5.1 Market Scenario and Growth of Dyes and Pigments -- 1.5.2 New Designing of Dyes Using Computed Programming for Functional Applications -- 1.5.3 Bacterial Pigments with Reduced or Minimal Toxicity Implications -- 1.6 Future Prospects -- 1.7 Conclusion -- References -- 2 Recent Advances in Photocatalytic Degradation of Dyes Using Heterogeneous Catalysts -- 2.1 Introduction -- 2.2 Classification of Dyes -- 2.3 Impact of Textile Dyes on the Environment -- 2.4 Principle of Photocatalysis and Mechanistic Pathways -- 2.4.1 Photocatalysts -- 2.4.2 Basic Principle of Photocatalysis -- 2.5 Effect of Key Operational Parameters -- 2.5.1 Effect of pH -- 2.5.2 Effect of the Dose of Semiconductor -- 2.5.3 Effect of the Initial Concentration of Dye -- 2.5.4 Effect of Additives -- 2.5.5 Effect of Temperature -- 2.5.6 Effect of Light Intensity and Wavelength -- 2.5.7 Effect of Irradiation Time -- 2.6 Degradation Studies of Dyes -- 2.6.1 General Considerations -- 2.6.2 Photocatalytic Degradation Scheme for an Azo Dye -- 2.6.3 Effect of Substituents -- 2.6.4 Comparison of Cationic and Anionic Dye -- 2.6.5 Correlation of Dye Degradation with Its Type -- 2.6.6 Effect of Doping and Mixed Semiconductors -- 2.7 Types of Heterogeneous Photocatalysts -- 2.7.1 TiO2 Catalyst -- 2.7.2 ZnO Catalyst -- 2.7.3 Other Photocatalysts. , 2.8 Application of Heterogeneous Photocatalysis -- 2.8.1 Self-Cleaning -- 2.8.2 Air Cleaning -- 2.8.3 Application for Water and Wastewater Treatment -- 2.8.4 Removal of Trace Metals -- 2.8.5 Removal of Inorganic Compounds -- 2.8.6 Applications in Photodynamic Therapy -- 2.9 Conclusion and Outlook -- References -- 3 Recent Developments in Photocatalytic Techniques of Dye Degradation in Effluents -- 3.1 Introduction -- 3.2 Literature -- 3.3 Photocatalytic Dye Degradation Chemical Phenomena in Core-Shell -- 3.4 Optimization of Variables in Photocatalysis of Dye Degradation -- 3.4.1 pH Variable Effect on the Dye's Degradation Chemical Phenomena -- 3.4.2 Issues Still to Be Handled with New Trends -- 3.5 Summary -- References -- 4 Role of Doped Semiconductors in the Catalytic Activity -- 4.1 Introduction -- 4.2 Photocatalytic Mechanism and Influencing Factor -- 4.2.1 Reaction Mechanism -- 4.3 Metal-Doped Semiconductor -- 4.3.1 Silver and Gold Doped Semiconductor -- 4.3.2 Silver Doped Semiconductor -- 4.3.3 Palladium Doped Semiconductor -- 4.3.4 Ag-Doped TiO2 -- 4.3.5 Au-TiO2 -- 4.4 Conclusion -- References -- 5 Hybrid Treatment Technologies for Dye Degradation in Wastewater -- 5.1 Introduction -- 5.2 Advanced Treatment Technologies -- 5.2.1 Fenton-Type Processes -- 5.2.2 Irradiation Based Processes -- 5.2.3 Ozone Based Processes -- 5.2.4 Other AOPs -- 5.3 Limitations of AOPs -- 5.4 Emerging Hybrid Treatment Technologies -- 5.4.1 Photochemical Processes Coupled with Electrochemical Processes -- 5.4.2 Photochemical Processes Coupled with Sonolytic Processes -- 5.5 Conclusions and Future Prospects -- References -- 6 Aerogel Nanomaterials for Dye Degradation -- 6.1 Introduction -- 6.1.1 Aerogel-Overview -- 6.2 Classification, Properties and Applications -- 6.2.1 Synthesis of Aerogel Materials -- 6.2.2 Dye Degradation using Aerogel Materials -- 6.3 Conclusion. , References -- 7 Effective Materials in the Photocatalytic Treatment of Dyestuffs and Stained Wastewater -- 7.1 Introduction -- 7.2 Classification of Dyes -- 7.3 Photocatalysis -- 7.3.1 The Process of Photocatalysis -- 7.3.2 Direct Mechanism for Dye Degradation -- 7.3.3 The Mechanism of Indirect Degradation of Dye -- 7.4 Factors Affecting Photocatalytic Performances -- 7.4.1 pH -- 7.4.2 Light Intensity -- 7.4.3 Feed Flow Rate -- 7.5 Concentration of Reactants -- 7.5.1 Number of Catalysts Loading Layers on Substrate -- 7.6 Temperature During Catalyst Immobilisation -- 7.6.1 Ions Species -- 7.7 Photocatalysis of Wastewater -- 7.8 Dye Removal From Wastewater May Be Accomplished Using a Variety of Methods -- 7.8.1 Adsorption Technique -- 7.8.2 Advanced Oxidation Process (AOP) -- 7.8.3 Bioremediation and Biodegradation -- 7.8.4 Electrochemical Method -- 7.8.5 Ion-Exchange Method -- 7.8.6 Membrane Filtration Technique -- 7.9 Modulation of Photocatalysis of Wastewater by Dyes -- 7.9.1 Methyl Orange -- 7.9.2 Indigo Carmine -- 7.9.3 Malachite Green -- 7.9.4 Rhodamine B -- 7.9.5 Methylene Blue -- 7.10 Conclusion -- References -- 8 Optimizing Nanocatalyst's and Technological Factors Influencing on Photocatalytic Degradation of Organic and Inorganic Pollutants -- 8.1 Introduction -- 8.2 Significance of Photocatalysis in Water Treatment -- 8.3 Mechanism of Nanoparticles (Photocatalyst) Involved in Photocatalysis of Wastewater Pollutants -- 8.4 Factors Influencing on the Photocatalysis Mechanism -- 8.5 Conclusion -- References -- 9 Biological Synthesis of Metallic Nanoparticles and Their Application in Photocatalysis -- 9.1 Introduction -- 9.2 Preparation of Metallic Nanoparticles -- 9.2.1 Physical Methods -- 9.2.2 Chemical Methods -- 9.2.3 Biological Methods -- 9.3 Biological Synthesis -- 9.3.1 Plant Components in Metallic Nanoparticles Synthesis. , 9.3.2 Microbial Components in Metal Oxide Nanoparticle Synthesis -- 9.3.3 Animal Components in Metal Oxide Nanoparticle Synthesis -- 9.4 Mechanism of Biological Synthesis of Metallic Nanoparticles Using Plant Extract -- 9.5 Advantages and Disadvantages of Biological Synthesis of Metallic Nanoparticles -- 9.6 Photocatalysis -- 9.6.1 Mechanism of Photocatalysis -- 9.6.2 Factors Affecting Photocatalysis Process -- 9.6.3 Role of Photocatalytic Process Against Different Wastewater Pollutants -- 9.7 Photocatalysts -- 9.7.1 Selection of Nanomaterials as Photocatalysts -- 9.7.2 Metal Oxide Nanoparticles Photocatalysts -- 9.7.3 Nanocomposites and Other Photocatalysts -- 9.8 Future Scope and Conclusion -- References -- 10 Mechanistic Aspect of the Dye Degradation Using Photocatalysts -- 10.1 Introduction -- 10.2 Classification of Dyes -- 10.3 Dye-Related Toxicity -- 10.4 Techniques for Investigating Dye Degradation -- 10.5 Strategies for Dealing with Dye -- 10.5.1 Physical Mechanistic Procedures -- 10.5.2 Chemical Approaches -- 10.5.3 Biological Remediation -- 10.6 The Fundamentals of Photocatalysis -- 10.6.1 Photocatalytic Routes and Their Mechanism -- 10.6.2 Photocatalyst -- 10.6.3 Parameters Affecting Photocatalytic Degradation -- 10.6.4 Intermediary Product Detection -- 10.7 Conclusion -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...