GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (3)
  • OceanRep  (11)
  • 1
    In: 18
    Type of Medium: Book
    Pages: XXXII, 200 S , graph. Darst
    Series Statement: Technical report / Woods Hole Oceanographic Institution 79-65
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Type of Medium: Book
    Pages: VIII, 132 , graph. Darst
    Series Statement: Technical report / Woods Hole Oceanographic Institution 81-92
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: 43
    Type of Medium: Book
    Pages: VI, 49 S , graph. Darst
    Series Statement: Technical report / Woods Hole Oceanographic Institution 91-18
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-19
    Description: The influence of mesoscale eddies on the flow field and the water masses, especially the oxygen distribution of the eastern tropical South Pacific, is investigated from a mooring, float, and satellite data set. Two anticyclonic (ACE1/2), one mode-water (MWE), and one cyclonic eddy (CE) are identified and followed in detail with satellite data on their westward transition with velocities of 3.2 to 6.0cms−1 from their generation region, the shelf of the Peruvian and Chilean upwelling regime, across the Stratus Ocean Reference Station (ORS;  ∼ 20°S, 85°W) to their decaying region far west in the oligotrophic open ocean. The ORS is located in the transition zone between the oxygen minimum zone and the well oxygenated South Pacific subtropical gyre. Velocity, hydrographic, and oxygen measurements at the mooring show the impact of eddies on the weak flow region of the eastern tropical South Pacific. Strong anomalies are related to the passage of eddies and are not associated with a seasonal signal in the open ocean. The mass transport of the four observed eddies across 85°W is between 1.1 and 1.8Sv. The eddy type-dependent available heat, salt, and oxygen anomalies are 8.1×1018J (ACE2), 1.0×1018J (MWE), and −8.9×1018J (CE) for heat; 25.2×1010kg (ACE2), −3.1×1010kg (MWE), and −41.5×1010kg (CE) for salt; and −3.6×1016µmol (ACE2), −3.5×1016µmol (MWE), and −6.5×1016µmol (CE) for oxygen showing a strong imbalance between anticyclones and cyclones for salt transports probably due to seasonal variability in water mass properties in the formation region of the eddies. Heat, salt, and oxygen fluxes out of the coastal region across the ORS region in the oligotrophic open South Pacific are estimated based on these eddy anomalies and on eddy statistics (gained out of 23 years of satellite data). Furthermore, four profiling floats were trapped in the ACE2 during its westward propagation between the formation region and the open ocean, which allows for conclusions on lateral mixing of water mass properties with time between the core of the eddy and the surrounding water. The strongest lateral mixing was found between the seasonal thermocline and the eddy core during the first half of the eddy lifetime.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (2). pp. 1068-1083.
    Publication Date: 2019-09-23
    Description: In the tropical eastern South Pacific the Stratus Ocean Reference Station (ORS) (∼20°S, 85.5°W) is located in the transition zone between the oxygen minimum zone (OMZ) and the well-oxygenated subtropical gyre. In February/March 2012, extremely anomalous water mass properties were observed in the thermocline at the Stratus ORS. The available eddy oxygen anomaly was −10.5 × 1016 µmol. This anomalous water was contained in an anticyclonic mode-water eddy crossing the mooring site. This eddy was absorbed at that time by an anticyclonic feature located south of the Stratus mooring. This was the largest water property anomaly observed at the mooring during the 13.5 month deployment period. The sea surface height anomaly (SSHA) of the strong mode-water eddy in February/March 2012 was weak, and while the lowest and highest SSHA were related to weak eddies, SSHA is found not to be sufficient to specify the eddy strength for subsurface-intensified eddies. Still, the anticyclonic eddy, and its related water mass characteristics, could be tracked backward in time in SSHA satellite data to a formation region in April 2011 off the Chilean coast. The resulting mean westward propagation velocity was 5.5 cm s−1. This extremely long-lived eddy carried the water characteristics from the near-coastal Chilean water to the open ocean. The water mass stayed isolated during the 11 month travel time due to high rotational speed of about 20 cm s−1 leading to almost zero oxygen in the subsurface layer of the anticyclonic mode-water eddy with indications of high primary production just below the mixed layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 16 (5). pp. 827-837.
    Publication Date: 2016-04-19
    Description: Data from a surface mooring located in the Sargasso Sea at 34°N, 70°W between May 1982 and May 1984 were compared with satellite data to investigate large diurnal sea surface temperature changes. Mooring and satellite measurements are in excellent agreement for those days on which no clouds covered the site at the time of the satellite pass. During the summer half-year at this site, there is a 20% charm of diurnal warming of more than 0.5°C, with values of up to 3.5°C observed in the two-year period. Diurnal warming observed at the mooring has been simulated well by a one-dimensional model driven by local beat and momentum fluxes. Under the conditions of very light wind and strong insolation that produce the Largest surface warming, the surface mixed-layer depth reduces to the convection depth, and wind-mixing becomes unimportant. The thermal response is then limited to depths between 1 and 2 m, making it likely that such events have been underreported in routine ship observations. In all cases observed, the spatial extent of warming events as determined by satellite data are well correlated with the corresponding atmospheric pressure patterns. Conditions giving rise to the largest diurnal warming events are often associated with a westward-extending ridge of the Bermuda high. In the region studied, 57°–75°W and 29°–43°N, diurnal warming of more than 1°C was found on occasion to cover areas in excess of 300 000 km2, with warming of more than 2°C coveting areas in excess of 130 000 km2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 88 (C14). pp. 9689-9705.
    Publication Date: 2019-04-04
    Description: During the Joint Air-Sea Interaction (JASIN) experiment conducted in the northern Rockall Trough in the summer of 1978, oceanographic moorings with surface buoys carrying wind recorders were deployed in an array designed to investigate the variability of the near-surface wind field at scales of from 2 to 200 km. The wind records together with observations taken on board the research vessels participating in JASIN have provided ground truth measurements for the sea surface wind velocity sensors on the Seasat satellite. During most of the experiment the wind field was characterized by spatial scales large in comparison with the separations between the buoys. On several occasions, spatial differences associated with cold fronts were identified, and it was possible to track the passage of the front through the array. However, quantitative analysis of the variability of the wind field was complicated both by a lack of data due to mechanical failures of some instruments and by significant differences in the performance of the diverse types of wind recorders. Reevaluation of the instruments used in JASIN and recent comparison of some of these instruments with more conventional sets of wind sensors confirm the possibility that there is significant error in the JASIN wind measurements made from the buoys. In particular, the vector-averaging wind recorder on W2, which was one of the few instruments to recover a full length record and which was chosen during a Seasat-JASIN workshop as the JASIN standard, had performance characteristics that were among the most difficult to explain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 52 (5). pp. 749-765.
    Publication Date: 2021-03-23
    Description: Surface meteorology, upper ocean current, and hydrographic measurements, collected along a repeated survey pattern and from a central mooring in the western equatorial Pacific during late 1992 to early 1993, were used to analyse upper ocean momentum balances on the intraseasonal time scale. Wind stresses derived from meteorological measurements were compared with numerical weather prediction products. Advection terms in the momentum equations were estimated by planar fits to the current and hydrographic data. Pressure gradient terms were derived from planar fits to the dynamic heights calculated from the hydrographic data, referenced by balancing the momentum equation in a selected layer below the mixed layer. Under prevailing westerly winds, westward pressure gradient forcings of 2 x 10 -7 ms -2 were set up in the western equatorial Pacific, countering the surface wind, while the total advection tended to accelerate the eastward momentum in the surface layer. During both calm wind and westerly wind burst periods, zonal turbulent momentum fluxes estimated from the ocean budgets were comparable with those estimated from microstructure dissipation rate measurements and with zonal wind stresses, so that the zonal momentum could be balanced within error bars. The meridional momentum balances were noisier, which might be due to the fact that the short meridional length scale of the equatorial inertial-gravity waves could contaminate the dynamic signals in the mixed temporal/spatial sampling data, so that the meridional gradient estimates from the planar fits could be biased.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: The comparison of equivalent neutral winds obtained from (a) four WHOI buoys in the subtropics and (b) scatterometer estimates at those locations reveals a root-mean-square (RMS) difference of 0.56-0.76 m/s. To investigate this RMS difference, different buoy wind error sources were examined. These buoys are particularly well suited to examine two important sources of buoy wind errors because: (1) redundant anemometers and a comparison with numerical flow simulations allow us to quantitatively assess flow distortion errors, and (2) one-minute sampling at the buoys allows us to examine the sensitivity of buoy temporal sampling/averaging in the buoy-scatterometer comparisons. The inter-anemometer difference varies as a function of wind direction relative to the buoy wind vane and is consistent with the effects of flow distortion expected based on numerical flow simulations. Comparison between the anemometers and scatterometer winds supports the interpretation that the inter-anemometer disagreement, which can be up to 5% of the wind speed, is due to flow distortion. These insights motivate an empirical correction to the individual anemometer records and subsequent comparison with scatterometer estimates show good agreement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: Climate change and variability are major societal challenges, and the ocean is an integral part of this complex and variable system. Key to the understanding of the ocean's role in the Earth's climate system is the study of ocean and sea-ice physical processes, including its interactions with the atmosphere, cryosphere, land and biosphere. These processes include those linked to ocean circulation; the storage and redistribution of heat, carbon, salt and other water properties; and air-sea exchanges of heat, momentum, freshwater, carbon and other gasses. Measurements of ocean physics variables are fundamental to reliable earth prediction systems for a range of applications and users. In addition, knowledge of the physical environment is fundamental to growing understanding of the ocean's biogeochemistry and biological/ecosystem variability and function. Through the progress from OceanObs'99 to OceanObs'09, the ocean observing system has evolved from a platform centric perspective to an integrated observing system. The challenge now is for the observing system to evolve to respond to an increasingly diverse end user group. The Ocean Observations Physics and Climate panel (OOPC), formed in 1995, has undertaken many activities that led to observing system-related agreements. Here, OOPC will explore the opportunities and challenges for the development of a fit-for-purpose, sustained and prioritized ocean observing system, focusing on physical variables that maximize support for fundamental research, climate monitoring, forecasting on different timescales, and society. OOPC recommendations are guided by the Framework for Ocean Observing (Lindstrom et al. 2012) which emphasizes identifying user requirements by considering time and space scales of the Essential Ocean Variables. This approach provides a framework for reviewing the adequacy of the observing system, looking for synergies in delivering an integrated observing system for a range of applications and focusing innovation in areas where existing technologies do not meet these requirements
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...