GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (3)
  • Data  (20)
Document type
Keywords
Language
Years
DDC
  • 11
    Publication Date: 2024-03-15
    Description: Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 /day), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg/cell) and carotenoid (0.06 fg/cell) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carotenoids, standard deviation; Carotenoids per cell; Cell biovolume, standard deviation; Cell density; Cell density, standard deviation; Cell surface area/cell volume, standard deviation; Cell surface area/cell volume ratio; Chlorella sp.; Chlorophyll a, standard deviation; Chlorophyll a per cell; Chlorophyta; Day of experiment; Diameter; Diameter, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Laboratory strains; Light saturation; Light saturation, standard deviation; Maximal electron transport rate, relative; Maximal electron transport rate, relative, standard deviation; Maximum light utilization efficiency; Maximum light utilization efficiency, standard deviation; Non photochemical quenching, maximum; Non photochemical quenching, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Photochemical quantum yield; Photochemical quantum yield, standard deviation; Phytoplankton; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Ratio; Ratio, standard deviation; Salinity; Salinity, standard deviation; Single species; Species; Surface area; Surface area, standard deviation; Temperature, water; Treatment; Type; Volume
    Type: Dataset
    Format: text/tab-separated-values, 2064 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-03-15
    Description: Large-scale green tides have been invading the coastal zones of the western Yellow Sea annually since 2008. Meanwhile, oceans are becoming more acidic due to continuous absorption of anthropogenic carbon dioxide, and intensive seaweed cultivation in Chinese coastal areas is leading to severe regional nutrient limitation. However, little is known about the combined effects of global and local stressors on the eco-physiology of bloom-forming algae. We cultured Ulva linza for 9–16 days under two levels of pCO2 (400 and 1000 µatm) and four treatments of nutrients (nutrient repletion, N limitation, P limitation, and N–P limitation) to investigate the physiological responses of this green tide alga to the combination of ocean acidification and nutrient limitation. For both sporelings and adult plants, elevated pCO2 did not affect the growth rate when cultured under nutrient-replete conditions but reduced it under P limitation; N or P limitations by themselves reduced growth rate. P limitation resulted in a larger inhibition in growth for sporelings compared to adult plants. Sporelings under P limitation did not reach the mature stage after 16 days of culture while those under P repletion became mature by day 11. Elevated pCO2 reduced net photosynthetic rate for all nutrient treatments but increased nitrate reductase activity and soluble protein content under P-replete conditions. N or P limitation reduced nitrate reductase activity and soluble protein content. These findings indicate that ocean acidification and nutrient limitation would synergistically reduce the growth of Ulva species and may thus hinder the occurrence of green tides in a future ocean environment.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyll a; Chlorophyll a, standard deviation; Chlorophyll b; Chlorophyll b, standard deviation; Chlorophyta; Coast and continental shelf; Day of experiment; Electron transport rate, relative; Electron transport rate, relative, standard deviation; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Length; Length, standard deviation; Lianyungang_OA; Macroalgae; Macro-nutrients; Net photosynthesis rate, oxygen; Net photosynthesis rate, standard deviation; Nitrate reductase activity; Nitrate reductase activity, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Primary production/Photosynthesis; Proteins, soluble; Proteins, standard deviation; Registration number of species; Respiration; Respiration rate, oxygen, dark; Respiration rate, oxygen, standard deviation; Salinity; Single species; Species; Temperate; Temperature, water; Treatment; Type; Ulva linza; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 4200 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-03-15
    Description: Motility plays a critical role in algal survival and reproduction, with implications for aquatic ecosystem stability. However, the effect of elevated CO2 on marine, brackish and freshwater algal motility is unclear. Here we show, using laboratory microscale and field mesoscale experiments, that three typical phytoplankton species had decreased motility with increased CO2. Polar marine Microglena sp., euryhaline Dunaliella salina and freshwater Chlamydomonas reinhardtii were grown under different CO2 concentrations for 5 years. Long-term acclimated Microglena sp. showed substantially decreased photo-responses in all treatments, with a photophobic reaction affecting intracellular calcium concentration. Genes regulating flagellar movement were significantly downregulated (P 〈 0.05), alongside a significant increase in gene expression for flagellar shedding (P 〈 0.05). D. salina and C. reinhardtii showed similar results, suggesting that motility changes are common across flagellated species. As the flagella structure and bending mechanism are conserved from unicellular organisms to vertebrates, these results suggest that increasing surface water CO2 concentrations may affect flagellated cells from algae to fish.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Behaviour; Bicarbonate ion; Bicarbonate ion, standard error; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcium, flux; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard error; Chlamydomonas reinhardtii; Chlorophyta; Daily vertical migration; Dunaliella salina; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene expression; Gene name; Irradiance; Laboratory experiment; Laboratory strains; Microglena sp.; Move velocity; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Oxygen evolution, per chlorophyll a; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; Percentage; pH; pH, standard error; Phytoplankton; Plantae; Potentiometric; Potentiometric titration; Registration number of species; Respiration; Salinity; Single species; Species; Temperature, water; Time in days; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 124767 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-03-15
    Description: The commercially important red macroalga Pyropia (formerly Porphyra) yezoensis is, in its natural intertidal environment, subjected to high levels of both photosynthetically active and ultraviolet radiation (PAR and UVR, respectively). In the present work, we investigated the effects of a plausibly increased global CO2 concentration on quantum yields of photosystems II (PSII) and I (PSI), as well as photosynthetic and growth rates of P. yezoensis grown under natural solar irradiance regimes with or without the presence of UV-A and/or UV-B. Our results showed that the high-CO2 treatment (1000 μbar, which also caused a drop of 0.3 pH units in the seawater) significantly increased both CO2 assimilation rates (by 35%) and growth (by 18%), as compared with ambient air of 400 μbar CO2. The inhibition of growth by UV-A (by 26%) was reduced to 15% by high-CO2 concentration, while the inhibition by UV-B remained at ~6% under both CO2 concentrations. Homologous results were also found for the maximal relative photosynthetic electron transport rates (rETRmax), the maximum quantum yield of PSII (Fv/Fm), as well as the midday decrease in effective quantum yield of PSII (YII) and concomitant increased non-photochemical quenching (NPQ). A two-way ANOVA analysis showed an interaction between CO2 concentration and irradiance quality, reflecting that UVR-induced inhibition of both growth and YII were alleviated under the high-CO2 treatment. Contrary to PSII, the effective quantum yield of PSI (YI) showed higher values under high-CO2 condition, and was not significantly affected by the presence of UVR, indicating that it was well protected from this radiation. Both the elevated CO2 concentration and presence of UVR significantly induced UV-absorbing compounds. These results suggest that future increasing CO2 conditions will be beneficial for photosynthesis and growth of P. yezoensis even if UVR should remain at high levels.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Carbon dioxide assimilation rate, per area; Carbon dioxide assimilation rate, standard deviation; Coast and continental shelf; Effective quantum yield; Effective quantum yield, standard deviation; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gaogong_Island; Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Light; Macroalgae; Maximal electron transport rate, relative; Maximal electron transport rate, relative, standard deviation; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Non photochemical quenching; Non photochemical quenching, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Plantae; Potentiometric titration; Primary production/Photosynthesis; Pyropia yezoensis; Registration number of species; Rhodophyta; Salinity; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Ultraviolet absorbing compounds; Ultraviolet absorbing compounds, standard deviation; Ultraviolet radiation-induced inhibition; Ultraviolet radiation-induced inhibition, standard deviation; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 338 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ihnken, Sven; Roberts, Simon; Beardall, John (2011): Differential responses of growth and photosynthesis in the marine diatom Chaetoceros muelleri to CO2 and light availability. Phycologia, 50(2), 182-193, https://doi.org/10.2216/10-11.1
    Publication Date: 2024-03-15
    Description: This study investigated the impact of photon flux and elevated CO2 concentrations on growth and photosynthetic electron transport on the marine diatom Chaetoceros muelleri and looked for evidence for the presence of a CO2-concentrating mechanism (CCM). pH drift experiments clearly showed that C. muelleri has the capacity to use bicarbonate to acquire inorganic carbon through one or multiple CCMs. The final pH achieved in unbuffered cultures was not changed by light intensity, even under very low photon flux, implying a low energy demand of bicarbonate use via a CCM. In short-term pH drift experiments, only treatment with the carbonic anhydrase inhibitor ethoxyzolamide (EZ) slowed down the rise in pH considerably. EZ was also the only inhibitor that altered the final pH attained, although marginally. In growth experiments, CO2 availability was manipulated by changing the pH in closed flasks at a fixed dissolved inorganic carbon (DIC) concentration. Low-light-treated samples showed lower growth rates in elevated CO2conditions. No CO2 effect was recorded under high light exposure. The maximal photosynthetic capacity, however, increased with CO2 concentration in saturating, but not in subsaturating, light intensities. Growth and photosynthetic capacity therefore responded in opposite ways to increasing CO2 availability. The capacity to photoacclimate to high and low photon flux appeared not to be affected by CO2treatments. However, photoacclimation was restricted to growth photon fluxes between 30 and 300 µmol photons m-2 s-1. The light saturation points for photosynthetic electron transport and for growth coincided at 100 µmol photons m-2 s-1. Below 100 µmol photons m-2 s-1 the light saturation point for photosynthesis was higher than the growth photon flux (i.e. photosynthesis was not light saturated under growth conditions), whereas at higher growth photon flux, photosynthesis was saturated below growth light levels.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chaetoceros muelleri; Chromista; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Identification; Laboratory experiment; Laboratory strains; Light; Light capturing capacity; Light capturing capacity, standard devitation; Light saturation point; Light saturation point, standard deviation; Maximal electron transport rate, relative; Maximal electron transport rate, relative, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH meter (Metrohm electrodes); Phytoplankton; Primary production/Photosynthesis; Radiation, photosynthetically active; Salinity; Single species; South Pacific; Spectrofluorometry; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 981 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Li, Futian; Beardall, John; Collins, Sinéad; Gao, Kunshan (2016): Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO2 over 1800 generations. Global Change Biology, https://doi.org/10.1111/gcb.13501
    Publication Date: 2024-03-15
    Description: Studies on the long-term responses of marine phytoplankton to ongoing ocean acidification (OA) are appearing rapidly in the literature. However, only a few of these have investigated diatoms, which is disproportionate to their contribution to global primary production. Here we show that a population of the model diatom Phaeodactylum tricornutum, after growing under elevated CO2 (1000 matm, HCL, pHT: 7.70) for 1860 generations, showed significant differences in photosynthesis and growth from a population maintained in ambient CO2 and then transferred to elevated CO2 for 20 generations (HC). The HCL population had lower mitochondrial respiration, than did the control population maintained in ambient CO2 (400 matm, LCL, pHT: 8.02) for 1860 generations. Although the cells had higher respiratory carbon loss within 20 generations under the elevated CO2, being consistent to previous findings, they down-regulated their respiration to sustain their growth in longer duration under the OA condition. Responses of phytoplankton to OA may depend on the timescale for which they are exposed due to fluctuations in physiological traits over time. This study provides the first evidence that populations of the model species, P. tricornutum, differ phenotypically from each other after having been grown for differing spans of time under OA conditions, suggesting that long-term changes should be measured to understand responses of primary producers to OA, especially in waters with diatom-dominated phytoplankton assemblages.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Carotenoids, standard deviation; Carotenoids per cell; Cell size; Cell size, standard deviation; Chlorophyll a, standard deviation; Chlorophyll a per cell; Chromista; Effective photochemical quantum yield; Effective photochemical quantum yield, standard deviation; Electron transport rate efficiency; Electron transport rate efficiency, standard deviation; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Laboratory strains; Light saturation point; Light saturation point, standard deviation; Maximal electron transport rate, relative; Maximal electron transport rate, relative, standard deviation; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Net photosynthesis rate, oxygen, per cell; Net photosynthesis rate, oxygen, per chlorophyll a; Net photosynthesis rate, standard deviation; Non photochemical quenching; Non photochemical quenching, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phaeodactylum tricornutum; Phytoplankton; Primary production/Photosynthesis; Ratio; Ratio, standard deviation; Registration number of species; Relative photoinhibition ratio; Relative photoinhibition ratio, standard deviation; Respiration; Respiration rate, oxygen, per cell; Respiration rate, oxygen, per chlorophyll a; Respiration rate, oxygen, standard deviation; Salinity; Single species; Species; Temperature, water; Time in days; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 1247 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-03-15
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biogenic silica, per cell; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell size; Chlorophyll a per cell; Chromista; Effective photochemical quantum yield; Electron transport rate of photosystem II; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Irradiance; Laboratory experiment; Laboratory strains; Light; Light saturation point; Macro-nutrients; Maximal electron transport rate, relative; Maximum photochemical quantum yield of photosystem II; Nitrate; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate organic carbon, per cell; Particulate organic nitrogen per cell; Pelagos; pH; Photosynthetic carbon fixation rate, per cell; Phytoplankton; Primary production/Photosynthesis; Registration number of species; Replicate; Respiration rate, oxygen, per cell; Salinity; Silicon/Carbon, molar ratio; Single species; Slope to saturation of photocenters; Species; Temperature, water; Thalassiosira pseudonana; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 8424 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Li, Futian; Fan, Jiale; Hu, Lili; Beardall, John; Xu, Juntian (2019): Physiological and biochemical responses of Thalassiosira weissflogii (diatom) to seawater acidification and alkalization. ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsz028
    Publication Date: 2024-03-15
    Description: Increasing atmospheric pCO2 leads to seawater acidification, which has attracted considerable attention due to its potential impact on the marine biological carbon pump and function of marine ecosystems. Alternatively, phytoplankton cells living in coastal waters might experience increased pH/decreased pCO2 (seawater alkalization) caused by metabolic activities of other photoautotrophs, or after microalgal blooms. Here we grew Thalassiosira weissflogii (diatom) at seven pCO2 levels, including habitat-related lowered levels (25, 50, 100, and 200 µatm) as well as present-day (400 µatm) and elevated (800 and 1600 µatm) levels. Effects of seawater acidification and alkalization on growth, photosynthesis, dark respiration, cell geometry, and biogenic silica content of T. weissflogii were investigated. Elevated pCO2 and associated seawater acidification had no detectable effects. However, the lowered pCO2 levels (25-100 µatm), which might be experienced by coastal diatoms in post-bloom scenarios, significantly limited growth and photosynthesis of this species. In addition, seawater alkalization resulted in more silicified cells with higher dark respiration rates. Thus, a negative correlation of biogenic silica content and growth rate was evident over the pCO2 range tested here. Taken together, seawater alkalization, rather than acidification, could have stronger effects on the ballasting efficiency and carbon export of T. weissflogii.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biogenic silica, per cell; Biogenic silica per surface area; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell biovolume; Cell surface area/cell volume ratio; Change; Chlorophyll a per cell; Chromista; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Laboratory experiment; Laboratory strains; Net oxygen evolution, per cell; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phytoplankton; Primary production/Photosynthesis; Registration number of species; Replicate; Respiration; Respiration rate, oxygen, dark per cell; Salinity; Single species; Species; Surface area; Temperature, water; Thalassiosira weissflogii; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 862 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-03-15
    Description: While seawater acidification induced by elevated CO2 is known to impact coccolithophores, the effects in combination with decreased salinity caused by sea ice melting and/or hydrological events have not been documented. Here we show the combined effects of seawater acidification and reduced salinity on growth, photosynthesis and calcification of Emiliania huxleyi grown at 2 CO2 concentrations (low CO2 LC:400 μatm; high CO2 HC:1000 μatm) and 3 levels of salinity (25, 30, and 35 per mil). A decrease of salinity from 35 to 25 per mil increased growth rate, cell size and photosynthetic performance under both LC and HC. Calcification rates were relatively insensitive to salinity though they were higher in the LC-grown compared to the HC-grown cells at 25 per mil salinity, with insignificant differences under 30 and 35 per mil. Since salinity and OA treatments did not show interactive effects on calcification, changes in calcification: photosynthesis ratios are attributed to the elevated photosynthetic rates at lower salinities, with higher ratios of calcification to photosynthesis in the cells grown under 35 per mil compared with those grown at 25 per mil. In contrast, photosynthetic carbon fixation increased almost linearly with decreasing salinity, regardless of the pCO2 treatments. When subjected to short-term exposure to high light, the low-salinity-grown cells showed the highest photochemical effective quantum yield with the highest repair rate, though the HC treatment enhanced the PSII damage rate. Our results suggest that, irrespective of pCO2, at low salinity Emiliania huxleyi up-regulates its photosynthetic performance which, despite a relatively insensitive calcification response, may help it better adapt to future ocean global environmental changes, including ocean acidification, especially in the coastal areas of high latitudes.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate, standard deviation; Calcification rate/Photosynthesis rate, ratio; Calcification rate/Photosynthesis rate, ratio, standard deviation; Calcification rate of carbon per cell; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Carotenoids, standard deviation; Carotenoids per cell; Cell, diameter; Cell, diameter, standard deviation; Chlorophyll a, standard deviation; Chlorophyll a per cell; Chlorophyll c, standard deviation; Chlorophyll c per cell; Chromista; Effective quantum yield; Effective quantum yield, standard deviation; Emiliania huxleyi; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Laboratory experiment; Laboratory strains; Maximum quantum yield of photosystem II; Maximum quantum yield of photosystem II, standard deviation; Net photosynthesis rate, per cell; Net photosynthesis rate, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phytoplankton; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Registration number of species; Repair/damage ratio; Repair/damage ratio, standard deviation; Salinity; Single species; Species; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 456 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-03-15
    Description: The marine picocyanobacterium Synechococcus accounts for a major fraction of the primary production across the global oceans. However, knowledge of the responses of Synechococcus to changing pCO2 and light levels has been scarcely documented. Hence, we grew Synechococcus sp. CB0101 at two CO2 concentrations (ambient CO2 AC:410 μatm; high CO2 HC:1000 μatm) under various light levels between 25 and 800 μmol photons m−2 s−1 for 10–20 generations and found that the growth of Synechococcus strain CB0101 is strongly influenced by light intensity, peaking at 250 μmol m−2 s−1 and thereafter declined at higher light levels. Synechococcus cells showed a range of acclimation in their photophysiological characteristics, including changes in pigment content, optical absorption cross section, and light harvesting efficiency. Elevated pCO2 inhibited the growth of cells at light intensities close to or greater than saturation, with inhibition being greater under high light. Elevated pCO2 also reduced photosynthetic carbon fixation rates under high light but had smaller effects on the decrease in quantum yield and maximum relative electron transport rates observed under increasing light intensity. At the same time, the elevated pCO2 significantly decreased particulate organic carbon (POC) and particulate organic nitrogen (PON), particularly under low light. Ocean acidification, by increasing the inhibitory effects of high light, may affect the growth and competitiveness of Synechococcus in surface waters in the future scenario.
    Keywords: Alkalinity, total; Aragonite saturation state; Bacteria; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a per cell; Contribution; Cyanobacteria; Effective quantum yield; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Functional absorption cross sections of photosystem II reaction centers; Growth/Morphology; Growth rate; Irradiance; Laboratory experiment; Laboratory strains; Light; Maximal electron transport rate, relative; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate organic carbon, per cell; Particulate organic nitrogen per cell; Pelagos; pH; Photosynthetic carbon fixation rate, per chlorophyll a; Photosynthetic carbon fixation rate per cell; Photosynthetic quantum efficiency; Phytoplankton; Primary production/Photosynthesis; Ratio; Replicate; Salinity; Single species; Species; Synechococcus sp.; Temperature, water; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 1428 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...