GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-12-28
    Description: Microbial degradation of substrates to terminal products is commonly understood as a unidirectional process. In individual enzymatic reactions, however, reversibility (reverse reaction and product back flux) is common. Hence, it is possible that entire pathways of microbial degradation are associated with back flux from the accumulating product pool through intracellular intermediates into the substrate pool. We investigated carbon and sulfur back flux during the anaerobic oxidation of methane (AOM) with sulfate, one of the least exergonic microbial catabolic processes known. The involved enzymes must operate not far from the thermodynamic equilibrium. Such an energetic situation is likely to favor product back flux. Indeed, cultures of highly enriched archaeal–bacterial consortia, performing net AOM with unlabeled methane and sulfate, converted label from 14C-bicarbonate and 35S-sulfide to 14C-methane and 35S-sulfate, respectively. Back fluxes reached 5% and 13%, respectively, of the net AOM rate. The existence of catabolic back fluxes in the reverse direction of net reactions has implications for biogeochemical isotope studies. In environments where biochemical processes are close to thermodynamic equilibrium, measured fluxes of labeled substrates to products are not equal to microbial net rates. Detection of a reaction in situ by labeling may not even indicate a net reaction occurring in the direction of label conversion but may reflect the reverse component of a so far unrecognized net reaction. Furthermore, the natural isotopic composition of the substrate and product pool will be determined by both the forward and back flux. This finding may have to be considered in the interpretation of stable isotope records.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Dissimilatory sulfate reduction ; Indole ; Pyridine ; Quinoline ; Complete anaerobic degradation ; Desulfobacterium indolicum ; Species description
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Indole (1.5 mmol/l) added to suflate-rich marine mud or sulfate-free sewage digestor sludge was anaerobically degraded within one week. Enrichments from sludge samples in defined indole-containing media with or without sulfate were selective for sulfate-reducing bacteria or mixed methanogenic associations, respectively. Other enrichments of sulfate-reducing bacteria were obtained with skatole, indoleacetate, indolepropionate, quinoline, and pyridine. From a marine enrichment with indole as sole electron donor and carbon source, an oval to rod-shaped, Gram-negative, nonsporing sulfate-reducing bacterium (strain In04) was isolated. Growth occurred in defined bicarbonate-buffered, sulfide-reduced media supplemented with vitamin B12. Furthen aromatic compounds utilized as electron donors and carbon sources were anthranilic acid and quinoline. Nonaromatic compounds used as substrates were formate, acetate, propionate, ethanol, propanol, butanol, pyruvate, malate, fumarate, and succinate. However, growth with substrates other than indole was rather slow. Thiosulfate served as an alternative electron acceptor. Complete oxidation of indole to CO2 was shown by stoichiometric measurements in batch culture with sulfate as electron acceptor. An average growth yield of 31.3 g cell dry weight was obtained per mol of indole oxidized. Pigment analysis revealed that cytochromes and menaquinone MK-7 (H2) were present. Desulfoviridin could not be detected. Strain In04 is described as new species of the new genus Desulfobacterium indolicum.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 148 (1987), S. 286-291 
    ISSN: 1432-072X
    Keywords: Sulfate-reducing bacteria ; Desulfobacter species ; Acetate ; Hydrogen ; Autotrophic growth ; Nitrogen fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sulfate-reducing bacteria with oval to rod-shaped cells (strains AcRS1, AcRS2) and vibrio-shaped cells (strains AcRM3, AcRM4, AcRM5) differing by size were isolated from anaerobic marine sediment with acetate as the only electron donor. A vibrio-shaped type (strain AcKo) was also isolated from freshwater sediment. Two strains (AcRS1, AcRM3) used ethanol and pyruvate in addition to acetate, and one strain (AcRS1) grew autotrophically with H2, sulfate and CO2. Higher fatty acids or lactate were never utilized. All isolates were able to grow in ammonia-free medium in the presence of N2. Nitrogenase activity under such conditions was demonstrated by the acetylene reduction test. The facultatively lithoautotrophic strain (AcRS1), a strain (AcRS2) with unusually large cells (2×5 μm), and a vibrio-shaped strain (AcRM3) are described as new Desulfobacter species, D. hydrogenophilus, D. latus, and D. curvatus, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 150 (1988), S. 477-481 
    ISSN: 1432-072X
    Keywords: Methanogenic bacteria ; Alcohols ; Trace elements ; Methylreductase ; Taxonomy ; Methanogenium thermophilum ; Methanogenium, organophilum ; Methanospirillum hungatei
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A thermophilic coccoid methanogenic bacterium, strain TCI, that grew optimally around 55° C was isolated with 2-propanol as hydrogen donor for methanogenesis from CO2. H2, formate or 2-butanol were used in addition. Each secondary alcohol was oxidized to its ketone. Growth occurred in defined freshwater as well as salt (2% NaCl, w/v) medium. Acetate was required as carbon source, and 4-aminobenzoate and biotin as growth factors. A need for molybdate or alternatively tungstate was shown. Strain TCI was further characterized together with two formerly isolated mesophilic secondary alcohol-utilizing methanogens, the coccoid strain CV and the spirilloid strain SK. The guanine plus cytosine content of the DNA of the three strains was 55,47, and 39 mol%, respectively. Determination of the molecular weights of the methylreductase subunits and sequencing of ribosomal 16S RNA of strains TCI and CV revealed close relationships to the genus Methanogenium. The new isolate TCI is classified as a strain of the existing species, Methanogenium thermophilum (thermophilicum). For strain CV, that uses ethanol or 1-propanol in addition, a classification as new species, Methanogenium organophilum, is proposed. Strain SK is affiliated with the existing species, Methanospirillum hungatei. The ability to use secondary alcohols was also tested with described species of methanogens. Growth with secondary alcohols was observed with Methanogenium marisnigri, Methanospirillum hungatei strain GP1 and Methanobacterium bryantii, but not with Methanospirillum strains JF1 and M1h, Methanosarcina barkeri, Methanococcus species or thermophilic strains or species other than the new isolate TCI.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Key words Anaerobic alkane oxidation ; Sulfate-reducing bacteria ; Cyclodextrin ; Alkenes ; Fatty acids ; Alkane activation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Natural relationships, improvement of anaerobic growth on hydrocarbons, and properties that may provide clues to an understanding of oxygen-independent alkane metabolism were studied with two mesophilic sulfate-reducing bacteria, strains Hxd3 and Pnd3. Strain Hxd3 had been formerly isolated from an oil tank; strain Pnd3 was isolated from marine sediment. Strains Hxd3 and Pnd3 grew under strictly anoxic conditions on n-alkanes in the range of C12–C20 and C14–C17, respectively, reducing sulfate to sulfide. Both strains shared 90% 16 S rRNA sequence similarity and clustered with classified species of completely oxidizing, sulfate-reducing bacteria within the δ-subclass of Proteobacteria. Anaerobic growth on alkanes was stimulated by α-cyclodextrin, which served as a non-degradable carrier for the hydrophobic substrate. Cells of strain Hxd3 grown on hydrocarbons and α-cyclodextrin were used to study the composition of cellular fatty acids and in vivo activities. When strain Hxd3 was grown on hexadecane (C16H34), cellular fatty acids with C-odd chains were dominant. Vice versa, cultures grown on heptadecane (C17H36) contained mainly fatty acids with C-even chains. In contrast, during growth on 1-alkenes or fatty acids, a C-even substrate yielded C-even fatty acids, and a C-odd substrate yielded C-odd fatty acids. These results suggest that anaerobic degradation of alkanes by strain Hxd3 does not occur via a desaturation to the corresponding 1-alkenes, a hypothetical reaction formerly discussed in the literature. Rather an alteration of the carbon chain by a C-odd carbon unit is likely to occur during activation; one hypothetical reaction is a terminal addition of a C1 unit. In contrast, fatty acid analyses of strain Pnd3 after growth on alkanes did not indicate an alteration of the carbon chain by a C-odd carbon unit, suggesting that the initial reaction differed from that in strain Hxd3. When hexadecane-grown cells of strain Hxd3 were resuspended in medium with 1-hexadecene, an adaptation period of 2 days was observed. Also this result is not in favor of an anaerobic alkane degradation via the corresponding 1-alkene.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 163 (1995), S. 96-103 
    ISSN: 1432-072X
    Keywords: Key words Anaerobic degradation ; Aromatic ; hydrocarbons ; Alkylbenzenes ; Ethylbenzene ; Crude oil ; Denitrifying bacteria ; Phylogeny ; Thauera selenatis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Anaerobic degradation of alkylbenzenes with side chains longer than that of toluene was studied in freshwater mud samples in the presence of nitrate. Two new denitrifying strains, EbN1 and PbN1, were isolated on ethylbenzene and n-propylbenzene, respectively. For comparison, two further denitrifying strains, ToN1 and mXyN1, were isolated from the same mud with toluene and m-xylene, respectively. Sequencing of 16S rDNA revealed a close relat ionship of the new isolates to Thauera selenatis. The strains exhibited different specific capacities for degradation of alkylbenzenes. In addition to ethylbenzene, strain EbN1 utilized toluene, but not propylbenzene. In contrast, propylbenzene-degrading strain PbN1 did not grow on toluene, but was able to utilize ethylbenzene. Strain ToN1 used toluene as the only hydrocarbon substrate, whereas strain mXyN1 utilized both toluene and m-xylene. Measurement of the degradation balance demonstr ated complete oxidation of ethylbenzene to CO2 by strain EbN1. Further characteristic substrates of strains EbN1 and PbN1 were 1-phenylethanol and acetophenone. In contrast to the other isolates, strain mXyN1 did not grow on benzyl alcohol. Benzyl alcohol (also m-methylbenzyl alcohol) was even a specific inhibitor of toluene and m-xylene utilization by strain mXyN1. None of the strains was able to grow on any of the alkylbenzenes with oxygen as electron acceptor. However, polar aromatic compounds such as benzoate were utilized under both oxic and anoxic conditions. All four isolates grew anaerobically on crude oil. Gas chromatographic analysis of crude oil after growth of strain ToN1 revealed specific depletion of toluene.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-072X
    Keywords: Autotrophic growth ; Sulfate-reducing bacteria ; Carbon dioxide ; Hydrogen ; Formate ; Homoacetogenic bacteria ; Desulfobacterium autotrophicum ; Desulfovibrio
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The capacity of mesophilic sulfate-reducing bacteria to grow lithoautotrophically with H2, sulfate and CO2 was investigated with enrichment cultures and isolated species. (a) Enrichments in liquid mineral media with H2, sulfate and CO2 consistently yielded mixed cultures of nonautotrophic, acetate-requiring Desulfovibrio species and autotrophic, acetate-producing Acetobacterium species (cell ratio approx. 20:1). (b) By direct dilution of mud samples in agar, various non-sporing sulfate reducers were isolated in pure cultures that did grow autotrophically. Two oval cell types (strains HRM2, HRM4) and one curved cell type (strain HRM6) from marine sediment were studied in detail. The strains grew in mineral medium supplemented only with vitamins (biotin, p-aminobenzoate, nicotinate). Carbon autotrophy was evident (i) from comparative growth experiments with non-autotrophic, acetate-requiring species, (ii) from high cell densities ruling out a cell synthesis from organic impurities in the mineral media, and (iii) by demonstrating that 96–99% of the cell carbon was derived from 14C-labelled CO2. Autotrophic growth occurred with a doubling time of 16–20 h at 24–28°C. Formate, fatty acids up to palmitate, ethanol, lactate, succinate, fumarate, malate and other organic acids were also used and completely oxidized. The three strains possessed cytochromes of the b-and c-type, but no desulfoviridin. Strain HRM2 is described as a new species of a new genus, Desulfobacterium autotrophicum. (c) The capacity for autotrophic growth was also tested with sulfate-reducing bacteria that originally had been isolated on organic substrates. The incompletely oxidizing, non-sporing types such as Desulfovibrio and Desulfobulbus species and Desulfomonas pigra were confirmed to be obligate heterotrophs that required acetate for growth with H2 and sulfate. In contrast, several of the completely oxidizing sulfate reducers were facultative autotrophs, such as Desulfosarcina variabilis, Desulfonema limicola, Desulfococcus niacini, and the newly isolated Desulfobacterium vacuolatum and Desulfobacter hydrogenophilus. The only incompletely oxidizing sulfate reducer that could grow autotrophically was the sporing Desulfotomaculum orientis, which obtained 96% of its cell carbon from 14C-labelled CO2. Desulfovibrio baarsii and Desulfococcus multivorans may also be regarded as types of facultative autotrophs; they could not oxidize H2, but grew on sulfate with formate as the only organic substrate.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 173 (2000), S. 58-64 
    ISSN: 1432-072X
    Keywords: Key wordsn-Alkanes ; Anaerobic hydrocarbon ¶oxidation ; Denitrifying bacteria ; Isolation ; Degradation ¶balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The capacity of denitrifying bacteria for anaerobic utilization of saturated hydrocarbons (alkanes) was investigated with n-alkanes of various chain lengths and with crude oil in enrichment cultures containing nitrate as electron acceptor. Three distinct types of denitrifying bacteria were isolated in pure culture. A strain (HxN1) with oval-shaped, nonmotile cells originated from a denitrifying enrichment culture with crude oil and was isolated with n-hexane (C6H14). Another strain (OcN1) with slender, rod-shaped, motile cells was isolated from an enrichment culture with n-octane (C8H18). A third strain (HdN1) with oval, somewhat pleomorphic, partly motile cells originated from an enrichment culture with aliphatic mineral oil and was isolated with n-hexadecane (C16H34). Cells of hexane-utilizing strain HxN1 grew homogeneously in the growth medium and did not adhere to the alkane phase, in contrast to the two other strains. Quantification of substrate consumption and cell growth revealed the capacity for complete oxidation of alkanes under strictly anoxic conditions, with nitrate being reduced to dinitrogen.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 146 (1986), S. 177-180 
    ISSN: 1432-072X
    Keywords: Dissimilatory sulfate reduction ; Phenol ; p-Cresol ; Desulfobacterium phenolicum ; Species description
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new sulfate-reducing bacterium was enriched and isolated from marine sediment with phenol as sole electron donor and carbon source. Strain Ph01 grew well in defined media without growth factors. Further aromatic compounds oxidized by strain Ph01 were benzoate, phenylacetate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, p-cresol, indole, anthranilic acid, and phenylalanine. Various fatty acids, alcohols and dicarboxylic acids were also utilized by strain Ph01. Sulfate and thiosulfate served as electron acceptors and were reduced to H2S. Stoichiometric measurements with strain Ph01 showed complete oxidation of phenol to CO2. Cytochromes and menaquinone MK-7(H2) were present; desulfoviridin could not be detected. Strain Ph01 is described as type strain of the new species Desulfobacterium phenolicum. In further marine enrichments with 4-hydroxybenzoate, 4-hydroxyphenylacetate, p-cresol or o-cresol as substrates and sulfate as electron acceptor a variety of morphologically different sulfate-reducing bacteria developed. However, since the new isolate strain Ph01 was able to degrade all these aromatic compounds (except o-cresol) no further studies with the enrichment cultures were carried out.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-072X
    Keywords: Desulfobacter hydrogenophilus ; Sulfate-reducing bacteria ; Autotrophy ; Citric acid cycle ; ATP-citrate lyase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The strict anaerobe Desulfobacter hydrogenophilus is able to grow autotrophically with CO2, H2, and sulfate as sole carbon and energy sources. The generation time at 30°C under autotrophic conditions in a pure mineral medium was 15 h, the growth yield was 8 g cell dry mass per mol sulfate reduced to H2S. Enzymes of the autotrophic CO2 assimilation pathway were investigated. Key enzymes of the Calvin cycle and of the acetyl CoA pathway could not be found. All enzymes of a reductive citric acid cycle were present at specific activities sufficient to account for the observed growth rate. Notably, an ATP-citrate lyase (1.3 μmol · min-1 · mg cell protein-1) was present both in autotrophically and in heterotrophically grown cells, which was rapidly inactivated in the absence of ATP. The data indicate that in D. hydrogenophilus a reductive citric acid cycle is operating in autotrophic CO2 fixation. Since other autotrophic sulfate reducers possess an acetyl CoA pathway for CO2 fixation, two different autotrophic pathways occur in the same physiological group.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...