GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
Document type
Years
  • 1
    Publication Date: 2018-08-12
    Description: It is becoming increasingly apparent that bathymetry plays a crucial role in determining the behavior of marine-terminating glaciers. This is because variations in the shape of the bed can produce both pinning points where glaciers (or their floating tongues) can ground and stabilize, as well as pathways for warm waters to move across the shelf and access the grounding line. Ahead of the first ITGC field season we present the existing state of knowledge about the bed in front of Thwaites Glacier (TG). We have compiled existing multibeam-bathymetric datasets from the UK, the USA and international partners (Korea, Germany) to produce a high-resolution grid (50-m cells) for the area. From this grid we identify possible pathways for warm Circumpolar Deep Water to the TG grounding line, a topographic high – as shallow as 130 m in places - that likely acted as a pinning point and is less than 18 km from the current eastern ice-shelf margin, and landforms indicative of the past behavior of the glacier (e.g. meltwater channels and basins, streamlined landforms). This exercise also highlights important data gaps to target for surveying in 2019, including for example, the area left vacant by the calving of the B-22 iceberg. Secondly, we explore existing sub-bottom and seismic-reflection profiles from the Amundsen Sea Embayment to investigate the nature of the substrate in front of TG. Unlithified sediment cover is generally thin (〈5 m) over scoured crystalline bedrock but thickens to up to 40 m in basins. We discuss potential coring targets close to pathways for warm water incursions, and former stability points including the possibility of unknown basins in front of TG.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-05
    Description: The coastal bathymetry of Thwaites Glacier (TG) is poorly known yet nearshore sea-floor highs have the potential to act as pinning points for floating ice shelves, or to block warm water incursions to the grounding line. In contrast, deeper areas control warm water routing. Here, we present more than 2000 km2 of new multibeam echo-sounder data (MBES) acquired offshore TG during the first cruise of the International Thwaites Glacier Collaboration (ITGC) project on the RV/IB Nathaniel B. Palmer (NBP19-02) in February-March 2019. Beyond TG, the bathymetry is dominated by a 〉1200 m deep, structurally-controlled trough and discontinuous ridge, on which the Eastern Ice Shelf is pinned. The geometry and composition of the ridge varies spatially with some sea-floor highs having distinctive flat-topped morphologies produced as their tops were planed-off by erosion at the base of the seaward-moving Thwaites Ice Shelf. In addition, submarine landform evidence indicates at least some unconsolidated sediment cover on the highs, as well as in the troughs that separate them. Knowing that this offshore area of ridges and troughs is a former bed for TG, we also used a novel spectral approach and existing ice-flow theory to investigate bed roughness and basal drag over the newly-revealed offshore topography. We show that the sea-floor bathymetry is a good analogue for extant bed areas of TG and that ice-sheet retreat over the sea-floor troughs and ridges would have been affected by high basal drag similar to that acting in the grounding zone today. Comparisons of the new MBES data with existing regional compilations show that high-frequency (finer than 5 km) bathymetric variability beyond Antarctic ice shelves can only be resolved by observations such as MBES and that without these data calculations of the oceanic heat flux may be significantly underestimated. This work supports the findings of recent numerical ice-sheet and ocean modelling studies that recognise the need for accurate and high-resolution bathymetry to determine warm water routing to the grounding zone and, ultimately, for predicting glacier retreat behaviour.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...