GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-05-01
    Description: Rugged bathymetry along slow-spreading mid-ocean ridges has the potential to impinge a strong control on gravity flows derived from oceanic fault scarps. Sedimentary lithofacies from the Macquarie Island ophiolite supports this hypothesis by displaying systematic variations that correspond with volcanic substrate differences and proximity to rift-related faults. Pillow-basalt terranes are associated with tightly confined bedrock corridors that funnel gravity flows into one direction. Vertical lithofacies variations formed from high-density to low-density turbidity currents record successive fill stages of the corridor axis. During initial stages tight confinement in the axis suppressed flow dilution and fluid turbulence. With continued corridor-axis filling, more dilute gravity flows predominated and formed lateral gradations from axial coarse-grained turbidites into thinly interbedded overbank lithofacies along corridor margins. These gravity-flow lithofacies converge into very thin muddy condensed intervals along inter-corridor highs where significant bottom-current reworking occurred. Conversely, partly confined tabular-basalt-floored basins promoted lateral expansion and dilution of gravity flows throughout the duration of basin filling. Variable paleocurrent-indicator directions record multiple reflections of single gravity-flow events off basin-bounding fault barriers. Coarsening-upward trends in these partly confined basins from thinly interbedded pelagic chert and ripple-bedded sandstones up into stacked turbidites preserves the ponding of sediment-starved submarine fans. In general, these ponded basins preserve the fine-grained distal ends of a gravity-flow continuum from coarse-grained fault-proximal en masse failures and cohesionless debris flows into medial high-density turbidity flows and distal dilute turbidity flows.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-01-01
    Description: Uplift, exhumation, and denudation of the lower oceanic crust are recorded by sedimentary rocks of Macquarie Island (54{degrees}30'S, 158{degrees}54'E), which were deposited within the slow-spreading proto-Macquarie spreading ridge between ca. 9 and 12 Ma. Measured stratigraphic sections typically contain basal basaltic breccia lithofacies that are overlain by a thick sequence of enriched mid-ocean-ridge basalt (E-MORB) with thin intercalations of gabbroic sedimentary lithofacies. Basaltic detritus has zeolite to lower-greenschist metamorphic grades typical of the upper oceanic crust, and gabbroic detritus has upper-greenschist to amphibolite metamorphic grades typical of the lower oceanic crust. Breccia clast counts and sedimentary structures indicate that basaltic lithofacies were locally derived from the footwalls of adjacent spreading-related faults. Sedimentary structures, detrital clinopyroxene major- and trace-element geochemistry, and 206Pb/238U zircon geochronology indicate that the gabbroic lithofacies were more distally derived from a Paleogene-aged tholeiitic MORB source. Detrital zircon populations of ca. 27 and ca. 33 Ma correspond to oceanic magnetic anomalies 8o and 13o, respectively, and exclude ca. 8.5 Ma gabbroic rocks of Macquarie Island as a potential source. Geodynamic reconstructions show that anomaly 8o crust from the Southeast Indian Ridge was juxtaposed against the active proto-Macquarie spreading ridge when sedimentary rocks of Macquarie Island were deposited and was a likely source for the gabbroic lithofacies. The proto-Macquarie spreading ridge and Southeast Indian Ridge were connected by the Jurru long-offset transform, which has undergone significant transpression since 27 Ma. This transpression formed a bathymetric transverse ridge that was composed of structurally isolated blocks of heterogeneously aged Paleogene source crust, which provided the source for Macquarie Island's gabbroic sedimentary lithofacies.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...