GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-03
    Description: We examine the frictional behavior of a range of lithified rocks used as analogs for fault rocks, cataclasites and ultracataclasites at seismogenic depths and compare them with gouge powders commonly used in experimental studies of faults. At normal stresses of ∼50 MPa, the frictional strength of lithified, isotropic hard rocks is generally higher than their powdered equivalents, whereas foliated phyllosilicate-rich fault rocks are generally weaker than powdered fault gouge, depending on foliation intensity. Most samples exhibit velocity-strengthening frictional behavior, in which sliding friction increases with slip velocity, with velocity weakening limited to phyllosilicate-poor samples. This suggests that lithification of phyllosilicate-rich fault gouge alone is insufficient to allow earthquake nucleation. Microstructural observations show prominent, throughgoing shear planes and grain comminution in the R1 Riedel orientation and some evidence of boundary shear in phyllosilicate-poor samples, while more complicated, anastomosing features at lower angles are common for phyllosilicate-rich samples. Comparison between powdered gouges of differing thicknesses shows that higher Riedel shear angles correlate with lower apparent coefficients of friction in thick fault zones. This suggests that the difference between the measured apparent friction and the true internal friction depends on the orientation of internal deformation structures, consistent with theoretical considerations of stress rotation.
    Description: Published
    Description: B08404
    Description: JCR Journal
    Description: restricted
    Keywords: fault zone fabric ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-23
    Description: Seismicity patterns offshore Costa Rica (Central America) at the Middle America Trench have led to speculation that large (moment magnitude, M w ~7.0) earthquakes are associated with subducting topographic highs. In areas of high basement topography, a regionally extensive nannofossil chalk unit is exposed at the seafloor on the incoming plate, whereas in regions of low basement topography, hemipelagic clay-rich sediment is exposed. Because the entire sediment section is subducted at this margin, lithologic variation in the uppermost subducting sediments may control plate boundary fault behavior. Our laboratory experiments reveal that the chalk is frictionally strong (µ = 0.71–0.88) and characterized by velocity-weakening and stick-slip behavior, notably at elevated temperature. In contrast, the hemipelagic sediment is weak (µ = 0.22–0.35) and in many cases velocity strengthening. We suggest that the presence of frictionally unstable carbonates at bathymetric highs may play a key, previously unrecognized, role in governing earthquake nucleation.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2015-10-20
    Description: Narrow, highly-comminuted shear localization features in faults, known as principal slip zones (PSZs), are commonly associated with large-offset seismogenic faults. In this study, laboratory friction experiments were performed using shale and slate gouges where deformation was encouraged to localize at the gouge–wall-rock boundary. The slate gouges develop a black, narrow PSZ composed of densely packed submicron particles that appear sintered while the spectator gouge remains largely undeformed. These PSZs form at subseismic slip velocities of ~10 –5 m/s and with a calculated temperature rise of ~3 °C. Instances of velocity-weakening friction, which is necessary for unstable fault slip, are only observed for slate samples with a PSZ; shale gouges, however, do not develop a PSZ and exhibit only velocity-strengthening frictional behavior. The development of a PSZ may therefore be a prerequisite for future earthquake slip to occur, rather than unequivocal evidence of past earthquake slip.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2017-11-23
    Description: The near-surface areas of major faults commonly contain weak, phyllosilicate minerals, which, based on laboratory friction measurements, are assumed to creep stably. However, it is now known that shallow faults can experience tens of meters of earthquake slip and also host slow and transient slip events. Laboratory experiments are generally performed at least two orders of magnitude faster than plate tectonic speeds, which are the natural driving conditions for major faults; the absence of experimental data for natural driving rates represents a critical knowledge gap. We use laboratory friction experiments on natural fault zone samples at driving rates of centimeters per year to demonstrate that there is abundant evidence of unstable slip behavior that was not previously predicted. Specifically, weak clay-rich fault samples generate slow slip events (SSEs) and have frictional properties favorable for earthquake rupture. Our work explains growing field observations of shallow SSE and surface-breaking earthquake slip, and predicts that such phenomena should be more widely expected.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...