GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract It has been hypothesized recently that regional-scale cooling caused by anthropogenic sulfate aerosols may be partially obscuring a warming signal associated with changes in greenhouse gas concentrations. Here we use results from model experiments in which sulfate and carbon dioxide have been varied individually and in combination in order to test this hypothesis. We use centered [R(t)] and uncentered [C(t)] pattern similarity statistics to compare observed time-evolving surface temperature change patterns with the model-predicted equilibrium signal patterns. We show that in most cases, the C(t) statistic reduces to a measure of observed global-mean temperature changes, and is of limited use in attributing observed climate changes to a specific causal mechanism. We therefore focus on R(t), which is a more useful statistic for discriminating between forcing mechanisms with different pattern signatures but similar rates of global mean change. Our results indicate that over the last 50 years, the summer (JJA) and fall (SON) observed patterns of near-surface temperature change show increasing similarity to the model-simulated response to combined sulfate aerosol/CO2 forcing. At least some of this increasing spatial congruence occurs in areas where the real world has cooled. To assess the significance of the most recent trends in R(t) and C(t), we use data from multi-century control integrations performed with two different coupled atmosphere-ocean models, which provide information on the statistical behavior of ‘unforced’ trends in the pattern correlation statistics. For the combined sulfate aerosol/CO2 experiment, the 50-year R(t) trends for the JJA and SON signals are highly significant. Results are robust in that they do not depend on the choice of control run used to estimate natural variability noise properties. The R(t) trends for the C02-only signal are not significant in any season. C(t) trends for signals from both the C02-only and combined forcing experiments are highly significant in all seasons and for all trend lengths (except for trends over the last 10 years), indicating large global-mean changes relative to the two natural variability estimates used here. The caveats regarding the signals and natural variability noise which form the basis of this study are numerous. Nevertheless, we have provided first evidence that both the largest-scale (global-mean) and smaller-scale (spatial anomalies about the global mean) components of a combined C02/anthropogenic sulfate aerosol signal are identifiable in the observed near-surface air temperature data. If the coupled-model noise estimates used here are realistic, we can be highly confident that the anthropogenic signal that we have identified is distinctly different from internally generated natural variability noise. The fact that we have been able to detect the detailed spatial signature in response to combined C02 and sulfate aerosol forcing, but not in response to C02 forcing alone, suggests that some of the regional-scale background noise (against which we were trying to detect a C02-only signal) is in fact part of the signal of a sulfate aerosol effect on climate. The large effect of sulfate aerosols found in this study demonstrates the importance of their inclusion in experiments designed to simulate past and future climate change.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. It has been hypothesized recently that regional-scale cooling caused by anthropogenic sulfate aerosols may be partially obscuring a warming signal associated with changes in greenhouse gas concentrations. Here we use results from model experiments in which sulfate and carbon dioxide have been varied individually and in combination in order to test this hypothesis. We use centered [R (t)] and uncentered [C (t)] pattern similarity statistics to compare observed time-evolving surface temperature change patterns with the model-predicted equilibrium signal patterns. We show that in most cases, the C (t) statistic reduces to a measure of observed global-mean temperature changes, and is of limited use in attributing observed climate changes to a specific causal mechanism. We therefore focus on R (t), which is a more useful statistic for discriminating between forcing mechanisms with different pattern signatures but similar rates of global mean change. Our results indicate that over the last 50 years, the summer (JJA) and fall (SON) observed patterns of near-surface temperature change show increasing similarity to the model-simulated response to combined sulfate aerosol/CO2 forcing. At least some of this increasing spatial congruence occurs in areas where the real world has cooled. To assess the significance of the most recent trends in R (t) and C (t), we use data from multi-century control integrations performed with two different coupled atmosphere-ocean models, which provide information on the statistical behavior of 'unforced' trends in the pattern correlation statistics. For the combined sulfate aerosol/CO2 experiment, the 50-year R (t) trends for the JJA and SON signals are highly significant. Results are robust in that they do not depend on the choice of control run used to estimate natural variability noise properties. The R (t) trends for the CO2-only signal are not significant in any season. C (t) trends for signals from both the CO2-only and combined forcing experiments are highly significant in all seasons and for all trend lengths (except for trends over the last 10 years), indicating large global-mean changes relative to the two natural variability estimates used here. The caveats regarding the signals and natural variability noise which form the basis of this study are numerous. Nevertheless, we have provided first evidence that both the largest-scale (global-mean) and smaller-scale (spatial anomalies about the global mean) components of a combined CO2/anthropogenic sulfate aerosol signal are identifiable in the observed near-surface air temperature data. If the coupled-model noise estimates used here are realistic, we can be highly confident that the anthropogenic signal that we have identified is distinctly different from internally generated natural variability noise. The fact that we have been able to detect the detailed spatial signature in response to combined CO2 and sulfate aerosol forcing, but not in response to CO2 forcing alone, suggests that some of the regional-scale background noise (against which we were trying to detect a CO2-only signal) is in fact part of the signal of a sulfate aerosol effect on climate. The large effect of sulfate aerosols found in this study demonstrates the importance of their inclusion in experiments designed to simulate past and future climate change.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Climate changes during the next 100 years caused by anthropogenic emissions of greenhouse gases have been simulated for the Intergovernmental Panel on Climate Change Scenarios A (“business as usual”) and D (“accelerated policies”) using a coupled ocean-atmosphere general circulation model. In the global average, the near-surface temperature rises by 2.6 K in Scenario A and by 0.6 K in Scenario D. The global patterns of climate change for both IPCC scenarios and for a third step-function 2 x CO2 experiment were found to be very similar. The warming delay over the oceans is larger than found in simulations with atmospheric general circulation models coupled to mixed-layer models, leading to a more pronounced land-sea contrast and a weaker warming (and in some regions even an initial cooling) in the Southern Ocean. During the first forty years, the global warming and sea level rise due to the thermal expansion of the ocean are significantly slower than estimated previously from box-diffusion-upwelling models, but the major part of this delay can be attributed to the previous warming history prior to the start of present coupled ocean-atmosphere model integration (cold start).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. Results from a control integration and time-dependent greenhouse warming experiments performed with a coupled ocean-atmosphere model are analysed in terms of their signal-to-noise properties. The aim is to illustrate techniques for efficient description of the space-time evolution of signals and noise and to identify potentially useful components of a multivariate greenhouse-gas ”fingerprint". The three 100-year experiments analysed here simulate the response of the climate system to a step-function doubling of CO2 and to the time-dependent greenhouse-gas increases specified in Scenarios A (”Business as Usual") and D (”Draconian Measures") of the Intergovernmental Panel on Climate Change (IPCC). If signal and noise patterns are highly similar, the separation of the signal from the natural variability noise is difficult. We use the pattern correlation between the dominant Empirical Orthogonal Functions (EOFs) of the control run and the Scenario A experiment as a measure of the similarity of signal and noise patterns. The EOF 1 patterns of signal and noise are least similar for near-surface temperature and the vertical structure of zonal winds, and are most similar for sea level pressure (SLP). The dominant signal and noise modes of precipitable water and stratospheric/tropospheric temperature contrasts show considerable pattern similarity. Despite the differences in forcing history, a highly similar EOF 1 surface temperature response pattern is found in all three greenhouse warming experiments. A large part of this similarity is due to a common land-sea contrast component of the signal. To determine the degree to which the signal is contaminated by the natural variability (and/or drift) of the control run, we project the Scenario A data onto EOFs 1 and 2 of the control. Signal contamination by the EOF 1 and 2 modes of the noise is lowest for near-surface temperature, a situation favorable for detection. The signals for precipitable water, SLP, and the vertical structure of zonal temperature and zonal winds are significantly contaminated by the dominant noise modes. We use cumulative explained spatial variance, principal component time series, and projections onto EOFs in order to investigate the time evolution of the dominant signal and noise modes. In the case of near-surface temperature, a single pattern emerges as the dominant signal component in the second half of the Scenario A experiment. The projections onto EOFs 1 and 2 of the control run indicate that Scenario D has a large common variability and/or drift component with the control run. This common component is also apparent between years 30 and 50 of the Scenario A experiment, but is small in the 2×CO2 integration. The trajectories of the dominant Scenario A and control run modes evolve differently, regardless of the basis vectors chosen for projection, thus making it feasible to separate signal and noise within the first two decades of the experiments. For Scenario D it may not be possible to discriminate between the dominant signal and noise modes until the final 2–3 decades of the 100-year integration.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Results from a control integration and time-dependent greenhouse warming experiments performed with a coupled ocean-atmosphere model are analysed in terms of their signal-to-noise properties. The aim is to illustrate techniques for efficient description of the space-time evolution of signals and noise and to identify potentially useful components of a multivariate greenhouse-gas “fingerprint”. The three 100-year experiments analysed here simulate the response of the climate system to a step-function doubling of CO2 and to the time-dependent greenhouse-gas increases specified in Scenarios A (“Business as Usual”) and D (“Draconian Measures”) of the Intergovernmental Panel on Climate Change (IPCC). If signal and noise patterns are highly similar, the separation of the signal from the natural variability noise is difficult. We use the pattern correlation between the dominant Empirical Orthogonal Functions (EOFs) of the control run and the Scenario A experiment as a measure of the similarity of signal and noise patterns. The EOF 1 patterns of signal and noise are least similar for near-surface temperature and the vertical structure of zonal winds, and are most similar for sea level pressure (SLP). The dominant signal and noise modes of precipitable water and stratospheric/tropospheric temperature contrasts show considerable pattern similarity. Despite the differences in forcing history, a highly similar EOF 1 surface temperature response pattern is found in all three greenhouse warming experiments. A large part of this similarity is due to a common land-sea contrast component of the signal. To determine the degree to which the signal is contaminated by the natural variability (and/or drift) of the control run, we project the Scenario A data onto EOFs 1 and 2 of the control. Signal contamination by the EOF 1 and 2 modes of the noise is lowest for near-surface temperature, a situation favorable for detection. The signals for precipitable water, SLP, and the vertical structure of zonal temperature and zonal winds are significantly contaminated by the dominant noise modes. We use cumulative explained spatial variance, principal component time series, and projections onto EOFs in order to investigate the time evolution of the dominant signal and noise modes. In the case of near-surface temperature, a single pattern emerges as the dominant signal component in the second half of the Scenario A experiment. The projections onto EOFs 1 and 2 of the control run indicate that Scenario D has a large common variability and/or drift component with the control run. This common component is also apparent between years 30 and 50 of the Scenario A experiment, but is small in the 2 × CO2 integration. The trajectories of the dominant Scenario A and control run modes evolve differently, regardless of the basis vectors chosen for projection, thus making it feasible to separate signal and noise within the first two decades of the experiments. For Scenario D it may not be possible to discriminate between the dominant signal and noise modes until the final 2–3 decades of the 100-year integration.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-05-20
    Print ISSN: 0941-2948
    Electronic ISSN: 1610-1227
    Topics: Geography , Physics
    Published by Schweizerbart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-05-11
    Print ISSN: 0941-2948
    Electronic ISSN: 1610-1227
    Topics: Geography , Physics
    Published by Schweizerbart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-03
    Description: In the early 1980s, Germany started a new era of modern Antarctic research. The Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) was founded and important research platforms such as the German permanent station in Antarctica, today called Neumayer III, and the research icebreaker Polarstern were installed. The research primarily focused on the Atlantic sector of the Southern Ocean. In parallel, the German National Science Foundation (Deutsche Forschungsgemeinschaft DFG) started a Priority Program ‘Antarctic Research’ (since 2003 called SPP-1158) to foster and intensify the cooperation between scientists from different German universities and the AWI as well as other institutes involved in polar research. Here, we review the main findings in meteorology and oceanography of the last decade, funded by the priority program. The paper presents field observations and modelling efforts, extending from the stratosphere to the deep ocean. The research spans a large range of temporal and spatial scales, including the interaction of both climate components. In particular, radiative processes, the interaction of the changing ozone layer with large-scale atmospheric circulations, and changes in the sea ice cover are discussed. Climate and weather forecast models provide an insight into the water cycle and the climate change signals associated with synoptic cyclones. Investigations of the atmospheric boundary layer focus on the interaction between atmosphere, sea ice, and ocean in the vicinity of polynyas and leads. The chapters dedicated to polar oceanography review the interaction between the ocean and ice shelves with regard to the freshwater input and discuss the changes in water mass characteristics, ventilation and formation rates, crucial for the deepest limb of the global, climate relevant meridional overturning circulation. They also highlight the associated storage of anthropogenic carbon as well as the cycling of carbon, nutrients, and trace metals in the ocean with special emphasis on the Weddell Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Communications Earth & Environment, Springer Nature, 4(1), pp. 26-26, ISSN: 2662-4435
    Publication Date: 2023-02-20
    Description: In recent decades, Europe has experienced more frequent flood and drought events. However, little is known about the long-term, spatiotemporal hydroclimatic changes across Europe. Here we present a climate field reconstruction spanning the entire European continent based on tree-ring stable isotopes. A pronounced seasonal consistency in climate response across Europe leads to a unique, well-verified spatial field reconstruction of European summer hydroclimate back to AD 1600. We find three distinct phases of European hydroclimate variability as possible fingerprints of solar activity (coinciding with the Maunder Minimum and the end of the Little Ice Age) and pronounced decadal variability superimposed by a long-term drying trend from the mid-20th century. We show that the recent European summer drought (2015–2018) is highly unusual in a multi-century context and unprecedented for large parts of central and western Europe. The reconstruction provides further evidence of European summer droughts potentially being influenced by anthropogenic warming and draws attention to regional differences.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...