GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring long-term biospheric fluxes, and to develop a wide range of biosphere–atmosphere exchange models. This paper presents a new model of this type, which has been developed for a pine forest canopy. In most coniferous species the canopy layer is well separated from the understorey and several cohorts of needles coexist. It was therefore found necessary to distinguish several vegetation layers and, in each layer, several leaf classes defined not only by their light regime and wetness status but also by their age. This model, named MuSICA, is a multilayer, multileaf process-based model. Each submodel is first independently parameterized using data collected at a EUROFLUX site near Bordeaux (Southwestern France). Particular care is brought to identify the seasonal variations in the various physiological parameters. The full model is then evaluated using a two-year long data set, split up into 12 day-type classes defined by the season, the weather type and the soil water status. Beyond the good overall agreement obtained between measured and modelled values at various time scales, several points of further improvement are identified. They concern the seasonal variations in the stomatal response of needles and the soil/litter respiration, as well as their interaction with soil or litter moisture. A sensitivity analysis to some of the model features (in-canopy turbulent transfer scheme, leaf age classes, water retention, distinction between shaded and sunlit leaves, number of layers) is finally performed in order to evaluate whether significant simplifications can be brought to such a model with little loss in its predictive quality. The distinction between several leaf classes is crucial if one is to compute biospheric fluxes accurately. It is also evidenced that accounting for in-canopy turbulent transfer leads to better estimates of the sensible heat flux.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Environmental monitoring and assessment 31 (1994), S. 175-181 
    ISSN: 1573-2959
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Measurements of dry deposition velocities for ozone and aerosol particles has been measured over a pine forest in the south-west of France by the eddy correlation method. Low frequency fluctuations in the variations of scalars can introduce erroneous values of vertical fluxes for ozone and aerosol particles but also, in some cases of low wind, for momentum and heat. The dry deposition velocity variations are similar for ozone and aerosol, although the mechanism of deposition are different. In the case of aerosol particles a parametrization, not far from that of Wesely et al. (1985) can be given.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...