GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-22
    Description: During inflammation, leukocyte–endothelial cell interactions generate molecular signals that regulate cell functions. The Ca 2+ - and F-actin–binding leukocyte-specific protein 1 (LSP1) expressed in leukocytes and nonhematopoietic endothelial cells is pivotal in regulating microvascular permeability and leukocyte recruitment. However, cell-specific function of LSP1 during leukocyte recruitment remains elusive. Using intravital microscopy of cremasteric microvasculature of chimeric LSP1-deficient mice, we show that not neutrophil but endothelial LSP1 regulates neutrophil transendothelial migration and extravascular directionality without affecting the speed of neutrophil migration in tissue in response to CXCL2 chemokine gradient. The expression of PECAM-1–sensitive α 6 β 1 integrins on the surface of transmigrated neutrophils was blunted in mice deficient in endothelial LSP1. Functional blocking studies in vivo and in vitro elucidated that α 6 β 1 integrins orchestrated extravascular directionality but not the speed of neutrophil migration. In LSP1-deficient mice, PECAM-1 expression was reduced in endothelial cells, but not in neutrophils. Similarly, LSP1-targeted small interfering RNA silencing in murine endothelial cells mitigated mRNA and protein expression of PECAM-1, but not ICAM-1 or VCAM-1. Overexpression of LSP1 in endothelial cells upregulated PECAM-1 expression. Furthermore, the expression of transcription factor GATA-2 that regulates endothelial PECAM-1 expression was blunted in LSP1-deficient or LSP1-silenced endothelial cells. The present study unravels endothelial LSP1 as a novel cell-specific regulator of integrin α 6 β 1 -dependent neutrophil extravascular chemotactic function in vivo, effective through GATA-2–dependent transcriptional regulation of endothelial PECAM-1 expression.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-23
    Description: Aims Retention of low-density lipoprotein (LDL) cholesterol beneath the arterial endothelium initiates an inflammatory response culminating in atherosclerosis. Since the overlying endothelium is healthy and intact early on, it is likely that LDL passes through endothelial cells by transcytosis. However, technical challenges have made confirming this notion and elucidating the mechanisms of transcytosis difficult. We developed a novel assay for measuring LDL transcytosis in real time across coronary endothelial cell monolayers; we used this approach to identify the receptor involved. Methods and results Murine aortas were perfused ex vivo with LDL and dextran of a smaller molecular radius. LDL (but not dextran) accumulated under the endothelium, indicating that LDL transcytosis occurs in intact vessels. We then confirmed that LDL transcytosis occurs in vitro using human coronary artery endothelial cells. An assay was developed to quantify transcytosis of DiI-LDL in real time using total internal reflection fluorescence microscopy. DiI-LDL transcytosis was inhibited by excess unlabelled LDL, while degradation of the LDL receptor by PCSK9 had no effect. Instead, LDL colocalized partially with the scavenger receptor SR-BI and overexpression of SR-BI increased LDL transcytosis; knockdown by siRNA significantly reduced it. Excess HDL, the canonical SR-BI ligand, significantly decreased LDL transcytosis. Aortas from SR-BI -deficient mice were perfused ex vivo with LDL and accumulated significantly less sub-endothelial LDL compared with wild-type littermates. Conclusion We developed an assay to quantify LDL transcytosis across endothelial cells and discovered an unexpected role for SR-BI. Elucidating the mechanisms of LDL transcytosis may identify novel targets for the prevention or therapy of atherosclerosis.
    Print ISSN: 0008-6363
    Electronic ISSN: 1755-3245
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-02
    Description: Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-B signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue infiltration by immune cells.
    Print ISSN: 0193-1849
    Electronic ISSN: 1522-1555
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...