GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-10-24
    Description: Trends in flood magnitudes vary across the conterminous USA (CONUS). There have been attempts to identify what controls these regionally varying trends, but these attempts were limited to certain—for example, climatic—variables or to smaller regions, using different methods and datasets each time. Here we attribute the trends in annual maximum streamflow for 4,390 gauging stations across the CONUS in the period 1960–2010, while using a novel combination of methods and an unprecedented variety of potential controlling variables to allow large‐scale comparisons and minimize biases. Using process‐based flood classification and complex networks, we find 10 distinct clusters of catchments with similar flood behavior. We compile a set of 31 hydro‐climatological and land use variables as predictors for 10 separate Random Forest models, allowing us to find the main controls the flood magnitude trends for each cluster. By using Accumulated Local Effect plots, we can understand how these controls influence the trends in the flood magnitude. We show that hydro‐climatologic changes and land use are of similar importance for flood magnitude trends across the CONUS. Static land use variables are more important than their trends, suggesting that land use is able to attenuate (forested areas) or amplify (urbanized areas) the effects of climatic changes on flood magnitudes. For some variables, we find opposing effects in different regions, showing that flood trend controls are highly dependent on regional characteristics and that our novel approach is necessary to attribute flood magnitude trends reliably at the continental scale while maintaining sensitivity to regional controls.
    Description: Key Points: A wide variety of controls are necessary to explain flood magnitude trends across the United States between 1960 and 2010. Climatic changes and land cover conditions are of similar importance for flood magnitude trends at the regional scale. Controls on flood trends can have highly nonlinear effects and can have opposing effects in different hydro‐climatological subregions.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: USACE Water Institute
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: https://nwis.waterdata.usgs.gov/usa/nwis/peak
    Description: https://water.usgs.gov/GIS/metadata/usgswrd/XML/streamgagebasins.xml
    Description: https://psl.noaa.gov/
    Description: https://www.sciencebase.gov/catalog/item/59692a64e4b0d1f9f05fbd39
    Keywords: ddc:551.48 ; annual maximum flood ; magnitude trends ; drivers ; Random Forest ; clustering ; climate change
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Internal variability of the Asian monsoon system and the relationship amongst its sub-systems, the Indian and East Asian Summer Monsoon, are not sufficiently understood to predict its responses to a future warming climate. Past environmental variability is recorded in Palaeoclimate proxy data. In the Asian monsoon domain many records are available, e.g. from stalagmites, tree-rings or sediment cores. They have to be interpreted in the context of each other, but visual comparison is insufficient. Heterogeneous growth rates lead to uneven temporal sampling. Therefore, computing correlation values is difficult because standard methods require co-eval observation times, and sampling-dependent bias effects may occur. Climate networks are tools to extract system dynamics from observed time series, and to investigate Earth system dynamics in a spatio-temporal context. We establish paleoclimate networks to compare paleoclimate records within a spatially extended domain. Our approach is based on adapted linear and nonlinear association measures that are more efficient than interpolation-based measures in the presence of inter-sampling time variability. Based on this new method we investigate Asian Summer Monsoon dynamics for the late Holocene, focusing on the Medieval Warm Period (MWP), the Little Ice Age (LIA), and the recent period of warming in East Asia. We find a strong Indian Summer Monsoon (ISM) influence on the East Asian Summer Monsoon during the MWP. During the cold LIA, the ISM circulation was weaker and did not extend as far east. The most recent period of warming yields network results that could indicate a currently ongoing transition phase towards a stronger ISM penetration into China. We find that we could not have come to these conclusions using visual comparison of the data and conclude that paleoclimate networks have great potential to study the variability of climate subsystems in space and time.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  EPIC3Scientific Reports, Nature Publishing Group, 4(4119), ISSN: 2045-2322
    Publication Date: 2019-07-17
    Description: Complex network approaches have recently been applied to continuous spatial dynamical systems, like climate, successfully uncovering the system's interaction structure. However the relationship between the underlying atmospheric or oceanic flow's dynamics and the estimated network measures have remained largely unclear. We bridge this crucial gap in a bottom-up approach and define a continuous analytical analogue of Pearson correlation networks for advection-diffusion dynamics on a background flow. Analysing complex networks of prototypical flows and from time series data of the equatorial Pacific, we find that our analytical model reproduces the most salient features of these networks and thus provides a general foundation of climate networks. The relationships we obtain between velocity field and network measures show that line-like structures of high betweenness mark transition zones in the flow rather than, as previously thought, the propagation of dynamical information.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Nonlinear Processes in Geophysics, COPERNICUS GESELLSCHAFT MBH, 18(3), pp. 389-404, ISSN: 1023-5809
    Publication Date: 2019-07-17
    Description: Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation) or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and kernel-based methods. In a thorough benchmark test we investigate the performance of these techniques. All methods have comparable root mean square errors (RMSEs) for low skewness of the inter-observation time distribution. For high skewness, very irregular data, interpolation bias and RMSE increase strongly. We find a 40 % lower RMSE for the lag-1 autocorrelation function (ACF) for the Gaussian kernel method vs. the linear interpolation scheme,in the analysis of highly irregular time series. For the cross correlation function (CCF) the RMSE is then lower by 60 %. The application of the Lomb-Scargle technique gave results comparable to the kernel methods for the univariate, but poorer results in the bivariate case. Especially the high-frequency components of the signal, where classical methods show a strong bias in ACF and CCF magnitude, are preserved when using the kernel methods. We illustrate the performances of interpolation vs. Gaussian kernel method by applying both to paleo-data from four locations, reflecting late Holocene Asian monsoon variability as derived from speleothem δ18O measurements. Cross correlation results are similar for both methods, which we attribute to the long time scales of the common variability. The persistence time (memory) is strongly overestimated when using the standard, interpolation-based, approach. Hence, the Gaussian kernel is a reliable and more robust estimator with significant advantages compared to other techniques and suitable for large scale application to paleo-data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-03-25
    Description: Detailed monitoring of subterranean microclimatic and hydrological conditions can delineate factors influencing speleothem-based climate proxy data and helps in their interpretation. Multi-annual monitoring of water stable isotopes, air temperature, relative humidity, drip rates and PCO2 in surface, soil and cave air gives detailed insight into dripwater isotopes, temperature and ventilation dynamics in Mawmluh Cave, NE India. Water isotopes vary seasonally in response to monsoonal rainfall. Most negative values are observed during late Indian Summer Monsoon (ISM), with a less than one-month lag between ISM rainfall and drip response. Two dry season and two less-well distinguishable wet season dynamic ventilation regimes are identified in Mawmluh Cave. Cave air temperatures higher than surface air result in chimney ventilation during dry season nights. Dry season days show reduced ventilation due to cool cave air relative to surface air and cold-air lake development. Both, high water flow and cooler-than-surface cave air temperatures result in air inflow during wet season nights. Wet season daytime ventilation is governed by river flow, but is prone to stagnation and development of cold air lakes. CO2 monitoring indicates that PCO2 levels vary at diurnal to annual scale. Mawmluh Cave seems to act as CO2 sink during part of the dry season. While very likely, additional data is needed to establish whether wet season cave air CO2 levels rise above atmospheric values. Drip behavior is highly nonlinear, related to effective recharge dynamics, and further complicated by human influence on the epikarst aquifer.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-05-11
    Description: The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5–7.9, 5.7–5.0, 4.1–3.7, and 3.0–2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0–1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-27
    Description: The magnitudes of river floods in Europe have been observed to change, but their alignment with changes in the spatial coverage or extent of individual floods has not been clear. We analyze flood magnitudes and extents for 3,872 hydrometric stations across Europe over the past five decades and classify each flood based on antecedent weather conditions. We find positive correlations between flood magnitudes and extents for 95% of the stations. In central Europe and the British Isles, the association of increasing trends in magnitudes and extents is due to a magnitude-extent correlation of precipitation and soil moisture along with a shift in the flood generating processes. The alignment of trends in flood magnitudes and extents highlights the increasing importance of transnational flood risk management.
    Keywords: 551.48 ; flood ; synchrony ; magnitude ; climate change ; classification ; spatial statistics
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-10-26
    Description: Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.
    Description: Published
    Description: 1383–1387
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...