GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Data  (81)
Document type
Keywords
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-14
    Description: The European Project for Ice Coring in Antarctica Dome ice core from Dome C (EDC) has allowed for the reconstruction of atmospheric CO2 concentrations for the last 800,000 years. Here we revisit the oldest part of the EDC CO2 record using different air extraction methods and sections of the core. For our established cracker system, we found an analytical artifact, which increases over the deepest 200 m and reaches 10.1 ± 2.4 ppm in the oldest/deepest part. The governing mechanism is not yet fully understood, but it is related to insufficient gas extraction in combination with ice relaxation during storage and ice structure. The corrected record presented here resolves partly - but not completely - the issue with a different correlation between CO2 and Antarctic temperatures found in this oldest part of the records. In addition, we provide here an update of 800,000 years atmospheric CO2 history including recent studies covering the last glacial cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-24
    Description: Advances in trace gas analysis allow localised, non-atmospheric features to be resolved in ice cores, superimposed on the coherent atmospheric signal. These highfrequency signals could not have survived the low-pass filter effect that gas diffusion in the firn exerts on the atmospheric history and therefore do not result from changes in the atmospheric composition at the ice sheet surface. Using continuous methane (CH4) records obtained from five polar ice cores, we characterise these non-atmospheric signals and explore their origin. Isolated samples, enriched in CH4 in the Tunu13 (Greenland) record are linked to the presence of melt layers. Melting can enrich the methane concentration due to a solubility effect, but we find that an additional in situ process is required to generate the full magnitude of these anomalies. Furthermore, in all the ice cores studied there is evidence of reproducible, decimetre-scale CH4 variability. Through a series of tests, we demonstrate that this is an artifact of layered bubble trapping in a heterogeneousdensity firn column; we use the term “trapping signal” for this phenomenon. The peak-to-peak amplitude of the trapping signal is typically 5 ppb, but may exceed 40 ppb. Signal magnitude increases with atmospheric CH4 growth rate and seasonal density contrast, and decreases with accumulation rate. Significant annual periodicity is present in the CH4 variability of two Greenland ice cores, suggesting that layered gas trapping at these sites is controlled by regular, seasonal variations in the physical properties of the firn. Future analytical campaigns should anticipate high-frequency artifacts at high-melt ice core sites or during time periods with high atmospheric CH4 growth rate in order to avoid misinterpretation of such features as past changes in atmospheric composition.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-08-26
    Description: Carbon monoxide (CO) is a naturally occurring atmospheric trace gas, a regulated pollutant, and one of the main components determining the oxidative capacity of the atmosphere. Evaluating climate-chemistry models under different conditions than today and constraining past CO sources requires a reliable record of atmospheric CO mixing ratios ([CO]) that includes data since preindustrial times. Here, we report the first continuous record of atmospheric [CO] for Southern Hemisphere (SH) high latitudes over the past 3 millennia. Our continuous record is a composite of three high-resolution Antarctic ice core gas records and firn air measurements from seven Antarctic locations. The ice core gas [CO] records were measured by continuous flow analysis (CFA), using an optical feedback cavity-enhanced absorption spectrometer (OF-CEAS), achieving excellent external precision (2.8-8.8gppb; 2σ) and consistently low blanks (ranging from 4.1±1.2 to 7.4±1.4gppb), thus enabling paleo-Atmospheric interpretations. Six new firn air [CO] Antarctic datasets collected between 1993 and 2016gCE at the DE08-2, DSSW19K, DSSW20K, South Pole, Aurora Basin North (ABN), and Lock-In sites (and one previously published firn CO dataset at Berkner) were used to reconstruct the atmospheric history of CO from g1/41897gCE, using inverse modeling that incorporates the influence of gas transport in firn. Excellent consistency was observed between the youngest ice core gas [CO] and the [CO] from the base of the firn and between the recent firn [CO] and atmospheric [CO] measurements at Mawson station (eastern Antarctica), yielding a consistent and contiguous record of CO across these different archives. Our Antarctic [CO] record is relatively stable from-835 to 1500gCE, with mixing ratios within a 30-45gppb range (2σ). There is a g1/45gppb decrease in [CO] to a minimum at around 1700gCE during the Little Ice Age. CO mixing ratios then increase over time to reach a maximum of g1/454gppb by g1/41985gCE. Most of the industrial period [CO] growth occurred between about 1940 to 1985gCE, after which there was an overall [CO] decrease, as observed in Greenland firn air and later at atmospheric monitoring sites and attributed partly to reduced CO emissions from combustion sources. Our Antarctic ice core gas CO observations differ from previously published records in two key aspects. First, our mixing ratios are significantly lower than reported previously, suggesting that previous studies underestimated blank contributions. Second, our new CO record does not show a maximum in the late 1800s. The absence of a [CO] peak around the turn of the century argues against there being a peak in Southern Hemisphere biomass burning at this time, which is in agreement with (i) other paleofire proxies such as ethane or acetylene and (ii) conclusions reached by paleofire modeling. The combined ice core and firn air [CO] history, spanning-835 to 1992gCE, extended to the present by the Mawson atmospheric record, provides a useful benchmark for future atmospheric chemistry modeling studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bock, Michael; Schmitt, Jochen; Beck, Jonas; Seth, Barbara; Chappellaz, Jérôme A; Fischer, Hubertus (2017): Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH4 ice core records. Proceedings of the National Academy of Sciences, 201613883, https://doi.org/10.1073/pnas.1613883114
    Publication Date: 2024-07-19
    Description: Atmospheric methane (CH4) records reconstructed from polar ice cores represent a integrated view on processes predominantly taking place in the terrestrial biogeosphere. Here we present dual stable isotopic methane records (d13CH4 and dD(CH4)) from four Antarctic ice cores, which provide improved constraints on past changes in natural methane sources. Our isotope data show that tropical wetlands and seasonally inundated floodplains are most likely the controlling sources of atmospheric methane variations for the current and two older interglacials and their preceding glacial maxima. The changes in these sources are steered by variations in temperature, precipitation and the water table, as modulated by insolation, (local) sea level and monsoon intensity. Based on our new dD(CH4) constraint, it appears that geologic emissions of methane may play a steady but only minor role in atmospheric CH4 changes, and that the glacial budget is not dominated by these sources. Superimposed on the glacial/interglacial variations is a marked difference in both isotope records, with systematically higher values during the last 25,000 years compared to older time periods. This shift cannot be explained by climatic changes. Rather, our isotopic methane budget points to a marked increase in fire activity, possibly due to biome changes and accumulation of fuel related to the late Pleistocene megafauna extinction, which took place in the course of the last glacial.
    Keywords: EPICA; European Project for Ice Coring in Antarctica
    Type: dataset publication series
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Yeung, Laurence Y; Murray, Lee T; Martinerie, Patricia; Witrant, Emmanuel; Hu, Huanting; Banerjee, Asmita; Orsi, Anais J; Chappellaz, Jérôme A (2019): Isotopic constraint on the twentieth-century increase in tropospheric ozone. Nature, 570, 224-227, https://doi.org/10.1038/s41586-019-1277-1
    Publication Date: 2024-07-19
    Description: Laboratory O2 clumped-isotope data (as D36 values measured at Rice University) for LOCK-IN firn air and air occluded in three ice different cores (SDM94, GISP2-D, and WDC06A) spanning gas ages of 1588 C.E. to 2016 C.E. Modeled atmospheric history from 1836 C.E. to 2016 C.E. using a firn- and ice-core inversion (constrained by the included trace-gas and bulk-isotope data), and from 1850 C.E. to 2016 C.E. via outputs of the GISS-E2.1 chemical transport model incorporated into a 2-box model of the atmosphere.
    Keywords: Clumped isotopes; firn; GISP2; GISS model; Ice core; LOCK-IN; Preindustrial; Siple Dome; tropospheric ozone; WAIS Divide
    Type: dataset publication series
    Format: application/zip, 11 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Augustin, Laurent; Barbante, Carlo; Barnes, Piers R F; Barnola, Jean-Marc; Bigler, Matthias; Castellano, Emiliano; Cattani, Olivier; Chappellaz, Jérôme A; Dahl-Jensen, Dorthe; Delmonte, Barbara; Dreyfus, Gabrielle; Durand, Gael; Falourd, Sonia; Fischer, Hubertus; Flückiger, Jacqueline; Hansson, Margareta E; Huybrechts, Philippe; Jugie, Gérard; Johnsen, Sigfús Jóhann; Jouzel, Jean; Kaufmann, Patrik R; Kipfstuhl, Sepp; Lambert, Fabrice; Lipenkov, Vladimir Ya; Littot, Geneviève C; Longinelli, Antonio; Lorrain, Reginald D; Maggi, Valter; Masson-Delmotte, Valerie; Miller, Heinz; Mulvaney, Robert; Oerlemans, Johannes; Oerter, Hans; Orombelli, Giuseppe; Parrenin, Frédéric; Peel, David A; Petit, Jean Robert; Raynaud, Dominique; Ritz, Catherine; Ruth, Urs; Schwander, Jakob; Siegenthaler, Urs; Souchez, Roland A; Stauffer, Bernhard; Steffensen, Jørgen Peder; Stenni, Barbara; Stocker, Thomas F; Tabacco, Ignazio; Udisti, Roberto; van de Wal, Roderik S W; van den Broeke, Michiel R; Wilhelms, Frank; Winther, Jan-Gunnar; Wolff, Eric William; Zucchelli, Mario (2004): Eight glacial cycles from an Antarctic ice core. Nature, 429(6992), 623-628, https://doi.org/10.1038/nature02599
    Publication Date: 2024-07-19
    Description: The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long - 28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.
    Keywords: Dome C; Dome C, Antarctica; DRILL; Drilling/drill rig; EDC; EDC99; EPICA; EPICA Dome C; European Project for Ice Coring in Antarctica; ICEDRILL; Ice drill
    Type: dataset publication series
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schmitt, Jochen; Schneider, Robert; Elsig, Joachim; Leuenberger, Daiana; Lourantou, Anna; Chappellaz, Jérôme A; Köhler, Peter; Joos, Fortunat; Stocker, Thomas F; Leuenberger, Markus Christian; Fischer, Hubertus (2012): Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science, 336(6082), 711-714, https://doi.org/10.1126/science.1217161
    Publication Date: 2024-07-19
    Description: The stable carbon isotope ratio of atmospheric CO2 (d13Catm) is a key parameter in deciphering past carbon cycle changes. Here we present d13Catm data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in d13Catm during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the d13Catm evolution. During the Last Glacial Maximum, d13Catm and atmospheric CO2 concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then.
    Keywords: Antarctica; Dome C; DRILL; Drilling/drill rig; EDC96; EDC99; EPICA; European Project for Ice Coring in Antarctica; ICEDRILL; Ice drill; TALDICE; Talos_Dome
    Type: dataset publication series
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-07-19
    Description: Abstract of Bazin et al. (2013): An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale had been developed based on an inverse dating method (Datice), combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousands of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2013), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120-800 ka. In this framework, new measurements of d18Oatm over Marine Isotope Stage (MIS) 11-12 on EDC and a complete d18Oatm record of the TALDICE ice cores permit us to derive additional orbital gas age constraints. The coherency of the different orbitally deduced ages (from d18Oatm, dO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology is now independent of other archives and shows only small differences, most of the time within the original uncertainty range calculated by Datice, when compared with the previous ice core reference age scale EDC3, the Dome F chronology, or using a comparison between speleothems and methane. For instance, the largest deviation between AICC2012 and EDC3 (5.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one. Abstract of Veres et al. (2013): The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 timescale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al. (2013) focuses on the interval 120-800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception, respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on d15N data employed as the Datice background scenario, the AICC2012 presents a slightly improved timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the seesaw mechanism, with maximum differences of about 600 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before. It is expected that the future contribution of both other long ice core records and other types of chronological constraints to the Datice tool will lead to further refinements in the ice core chronologies beyond the AICC2012 chronology. For the time being however, we recommend that AICC2012 be used as the preferred chronology for the Vostok, EDC, EDML and TALDICE ice core records, both over the last glacial cycle (this study), and beyond (following Bazin et al., 2013). The ages for NGRIP in AICC2012 are virtually identical to those of GICC05 for the last 60.2 ka, whereas the ages beyond are independent of those in GICC05modelext (as in the construction of AICC2012, the GICC05modelext was included only via the background scenarios and not as age markers). As such, where issues of phasing between Antarctic records included in AICC2012 and NGRIP are involved, the NGRIP ages in AICC2012 should therefore be taken to avoid introducing false offsets. However for issues involving only Greenland ice cores, there is not yet a strong basis to recommend superseding GICC05modelext as the recommended age scale for Greenland ice cores.
    Keywords: EPICA; European Project for Ice Coring in Antarctica; Greenland Ice Core Projects; GRIP/GISP/NGRIP
    Type: dataset publication series
    Format: application/zip, 16 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rasmussen, Sune Olander; Abbott, Peter M; Blunier, Thomas; Bourne, Mark; Brook, Edward J; Buchardt, Susanne L; Buizert, Christo; Chappellaz, Jérôme A; Clausen, Henrik Brink; Cook, Eliza; Dahl-Jensen, Dorthe; Davies, Siwan M; Guillevic, Myriam; Kipfstuhl, Sepp; Laepple, Thomas; Seierstad, Inger K; Severinghaus, Jeffrey P; Steffensen, Jørgen Peder; Stowasser, Christopher; Svensson, Anders M; Vallelonga, Paul T; Vinther, Bo Møllesøe; Wilhelms, Frank; Winstrup, Mai (2013): A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core. Climate of the Past, 9(6), 2713-2730, https://doi.org/10.5194/cp-9-2713-2013
    Publication Date: 2024-07-19
    Description: A stratigraphy-based chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core has been derived by transferring the annual layer counted Greenland Ice Core Chronology 2005 (GICC05) and its model extension (GICC05modelext) from the NGRIP core to the NEEM core using 787 match points of mainly volcanic origin identified in the electrical conductivity measurement (ECM) and dielectrical profiling (DEP) records. Tephra horizons found in both the NEEM and NGRIP ice cores are used to test the matching based on ECM and DEP and provide five additional horizons used for the timescale transfer. A thinning function reflecting the accumulated strain along the core has been determined using a Dansgaard-Johnsen flow model and an isotope-dependent accumulation rate parameterization. Flow parameters are determined from Monte Carlo analysis constrained by the observed depth-age horizons. In order to construct a chronology for the gas phase, the ice age-gas age difference (Delta age) has been reconstructed using a coupled firn densification-heat diffusion model. Temperature and accumulation inputs to the Delta age model, initially derived from the water isotope proxies, have been adjusted to optimize the fit to timing constraints from d15N of nitrogen and high-resolution methane data during the abrupt onset of Greenland interstadials. The ice and gas chronologies and the corresponding thinning function represent the first chronology for the NEEM core, named GICC05modelext-NEEM-1. Based on both the flow and firn modelling results, the accumulation history for the NEEM site has been reconstructed. Together, the timescale and accumulation reconstruction provide the necessary basis for further analysis of the records from NEEM.
    Keywords: NEEM; NGRIP; North Greenland Eemian Ice Drilling; North Greenland Ice Core Project
    Type: dataset publication series
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...