GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of Physical Oceanography Vol. 37, No. 4 ( 2007-04-01), p. 946-961
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 37, No. 4 ( 2007-04-01), p. 946-961
    Abstract: A model of the subpolar North Atlantic Ocean is used to study different aspects of ventilation and water mass transformation during a year with moderate convection intensity in the Labrador Sea. The model realistically describes the salient features of the observed hydrographic structure and current system, including boundary currents and recirculations. Ventilation and transformation rates are defined and compared. The transformation rate of Labrador Sea Water (LSW), defined in analogy to several observational studies, is 6.3 Sv (Sv ≡ 106 m3 s−1) in the model. Using an idealized ventilation tracer, mimicking analyses based on chlorofluorocarbon inventories, an LSW ventilation rate of 10 Sv is found. Differences between both rates are particularly significant for those water masses that are partially transformed into denser water masses during winter. The main export route of the ventilated LSW is the deep Labrador Current (LC). Backward calculation of particle trajectories demonstrates that about one-half of the LSW leaving the Labrador Sea within the deep LC originates in the mixed layer during that same year. Near the offshore flank of the deep LC at about 55°W, the transformation of LSW begins in January and is at a maximum in February/March. While the export of transformed LSW out of the central Labrador Sea continues for several months, LSW generated near the boundary current is exported more rapidly, with maximum transport rates during March/April within the deep LC.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    In: Journal of Climate, American Meteorological Society, Vol. 31, No. 10 ( 2018-05-15), p. 4157-4174
    Abstract: Decadal variabilities in Indian Ocean subsurface ocean heat content (OHC; 50–300 m) since the 1950s are examined using ocean reanalyses. This study elaborates on how Pacific variability modulates the Indian Ocean on decadal time scales through both oceanic and atmospheric pathways. High correlations between OHC and thermocline depth variations across the entire Indian Ocean Basin suggest that OHC variability is primarily driven by thermocline fluctuations. The spatial pattern of the leading mode of decadal Indian Ocean OHC variability closely matches the regression pattern of OHC on the interdecadal Pacific oscillation (IPO), emphasizing the role of the Pacific Ocean in determining Indian Ocean OHC decadal variability. Further analyses identify different mechanisms by which the Pacific influences the eastern and western Indian Ocean. IPO-related anomalies from the Pacific propagate mainly through oceanic pathways in the Maritime Continent to impact the eastern Indian Ocean. By contrast, in the western Indian Ocean, the IPO induces wind-driven Ekman pumping in the central Indian Ocean via the atmospheric bridge, which in turn modifies conditions in the southwestern Indian Ocean via westward-propagating Rossby waves. To confirm this, a linear Rossby wave model is forced with wind stresses and eastern boundary conditions based on reanalyses. This linear model skillfully reproduces observed sea surface height anomalies and highlights both the oceanic connection in the eastern Indian Ocean and the role of wind-driven Ekman pumping in the west. These findings are also reproduced by OGCM hindcast experiments forced by interannual atmospheric boundary conditions applied only over the Pacific and Indian Oceans, respectively.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 41, No. 6 ( 2014-03-28), p. 2033-2040
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2014
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2014
    In:  Journal of Geophysical Research: Oceans Vol. 119, No. 11 ( 2014-11), p. 7772-7793
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 119, No. 11 ( 2014-11), p. 7772-7793
    Type of Medium: Online Resource
    ISSN: 2169-9275
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2014
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2017
    In:  Journal of Geophysical Research: Oceans Vol. 122, No. 4 ( 2017-04), p. 2686-2708
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 122, No. 4 ( 2017-04), p. 2686-2708
    Abstract: Detailed comparison between high‐resolution VIKING20 model and observations reveal realistic flow fields in the subpolar North Atlantic North Atlantic Current transports in model and observations are comparable within the uncertainties The NAO influences the transport and flow field of the North Atlantic Current; higher transports occur during positive phases
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2017
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2021
    In:  Journal of Geophysical Research: Oceans Vol. 126, No. 7 ( 2021-07)
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 126, No. 7 ( 2021-07)
    Abstract: Eddy‐rich ocean model simulations (1958–2019) feature large variability of spatial deep convection patterns in subpolar North Atlantic In 2015–2018, deep convection showed exceptional large and small relative contributions of eastern and western subpolar gyre, respectively Small western contribution is potentially associated with enhanced Greenland melting and recent eastern North Atlantic fresh anomaly
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2021
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1994
    In:  Journal of Geophysical Research: Oceans Vol. 99, No. C10 ( 1994-10-15), p. 20381-20391
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 99, No. C10 ( 1994-10-15), p. 20381-20391
    Abstract: Sources of near‐surface oceanic variability in the central North Atlantic are identified from a combined analysis of climatology, surface drifter, and Geosat altimeter data as well as eddy‐resolving and Community Modeling Effort North Atlantic model results. Both observational and numerical methods give a consistent picture of the concentration of mesoscale variability along the mean zonal flow bands. Three areas of high eddy energy can be found in all observational data sets: the North Equatorial Current, the North Atlantic Current, and the Azores Current. With increasing horizontal resolution the numerical models give a more realistic representation of the variability in the first two regimes, while no improvement is found with respect to the Azores Current Frontal Zone. Examination of the upper ocean hydrographic structure indicates baroclinic instability to be the main mechanism of eddy generation and suggests that the model deficiencies in the Azores Current area are related to deficiencies in the mean hydrographic fields. A linear instability analysis of the numerical model output reveals that instability based on the velocity shear between the mixed layer and the interior is also important for the generation of the mid‐ocean variability, indicating a potential role of the mixed layer representation for the model. The model successfully simulates the northward decrease of eddy length scales observed in the altimeter data, which follow a linear relationship with the first baroclinic Rossby radius. An analysis of the eddy‐mean flow interaction terms and the energy budget indicates a release of mean potential energy by downgradient fluxes of heat in the main frontal zones. At the same time the North Atlantic Current is found to be supported by convergent eddy fluxes of zonal momentum.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1994
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2007
    In:  Journal of Geophysical Research Vol. 112, No. C9 ( 2007-09-20)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 112, No. C9 ( 2007-09-20)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2007
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2009
    In:  Journal of Geophysical Research Vol. 114, No. C5 ( 2009-05-19)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 114, No. C5 ( 2009-05-19)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2009
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2010
    In:  Journal of Geophysical Research Vol. 115, No. C9 ( 2010-09-16)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 115, No. C9 ( 2010-09-16)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2010
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...