GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 378 (1995), S. 50-54 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Limited measurements of alcohols and carbonyls have been reported from ground sites generally in rural/urban environments5 7. Recently, we have developed and tested a semi-automated airborne instrument that uses a Reduction Gas Detector (ROD) for the sensitive (10 parts per trillion (1012) by ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 333 (1988), S. 51-52 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The air samples were collected in evacuated stainless steel electropolished canisters. Dissolved gas in seawater samples were stripped in situ with ultra-grade helium by a technique described by Bonsang et al.3. The analysis was performed in the laboratory by gas chromatography with a flame ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 6 (1988), S. 3-20 
    ISSN: 1573-0662
    Keywords: Nonmethane hydrocarbons ; sea-air exchanges
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract C2-C6 Nonmethane hydrocarbon (NMHC) concentrations in the atmospheric boundary layer and in surface seawater were simultaneously measured during an oceanographic cruise in the intertropical Indian Ocean. NMHC were found to be mainly C2-C4 alkenes and C2-C3 alkanes. Their concentrations ranged from 1 to 30×10−9 l/l in the seawater and 0.1 to 15 ppbv in the atmosphere. Seawater appeared to be a source because the C2-C6 NMHC were supersaturated with respect to the atmosphere by 2 or 3 orders of magnitude. After a selection of the pure marine atmospheric samples, performed with the help of stable and radioactive continental tracers, we found an identical composition in NMHC of surface air and seawater. This observation enabled us to establish that the gas transfer between sea and air occurred according to nonsteady state processes, and that the fluxes cannot be deduced only from atmospheric measurements. An order of magnitude value of the oceanic source for the different NMHC is however derived from the comparison of their sea water concentrations to that of propane and an independent evluation of the marine source of this last compound.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 25 (1996), S. 115-148 
    ISSN: 1573-0662
    Keywords: NMHC budget ; tropospheric distributions ; methane budget ; TROPOZ II experiment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract One hundred atmospheric samples were collected aboard the French Caravelle research aircraft, during the TROPOZ II experiment (January 1991). Tropospheric meridional distributions versus height were then derived from 70° N to 60° S and between 0.25 km and 11 km for methane, acetylene, ethane and propane. Areas of significant emissions were identified over northern latitudes with, for acetylene, maximum mixing ratios in the north (1.896 ppbv) more than 70 times higher than in background southern latitudes (0.025 ppbv). The influence of emissions from biomass burning was also obvious in the tropical boundary layer. Significant dynamic phenomena led to high mixing ratio zones above 8 or 10 km even for the most reactive hydrocarbons. For the first time, simultaneous assessment of global tropospheric contents of several light hydrocarbons was carried out. Using TROPOZ II data (January 1991) and STRATOZ III data (June 1984) collected by Rudolph (1988) during similar aircraft flights in 1988, the following tropospheric loads (in Tg-compound) were estimated, in January 1991 and June 1984, respectively: 1.1 and 0.4 for acetylene, 5.0 and 3.9 for ethane, 3.6 and 1.4 for propane and 3545 for methane in January only. According to our results, 40 to 65% of acetylene and alkanes are oxidized in the tropics. In addition, by computing the annual tropospheric sink of acetylene and alkanes, an evaluation of their annual global fluxes was performed. The figures are, in Tg-compound y-1 with an uncertainty of 80% to an order of magnitude, based on January and June data, respectively: 10 and 6.6 for acetylene, 16.3 and 17.6 for ethane and 52.3 and 26.5 for propane.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 11 (1990), S. 169-178 
    ISSN: 1573-0662
    Keywords: Nonmethane hydrocarbons ; tropospheric chemistry ; background pollution ; air-sea exchanges
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Between January 1984 and May 1987, C2 to C5 NMHC concentrations, and Radon-222 activities were measured at Amsterdam Island in the Indian Ocean. A large variability of about one order of magnitude was observed in the NMHC concentrations. Most of the samples were collected under marine influence. Using ethene as a reference compound for marine emissions, it appears that the NMHC/ethene composition of the air and its variability directly reflect the composition of dissolved gases in surface seawater. Only the ethane/ethene ratio presents a significant deviation from this typical composition and this can be attributed to a continental component. At sea level, the reation frequency of OH radicals with the NMHC is similar to that of methane and carbon monoxide. Thus, the contribution of marine NMHC should be taken into account in the modelling of oxidants in remote atmospheres.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-22
    Description: We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition, and compare this to fluvial inputs and di-nitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf, and we estimate about 75% of this fluvial nitrogen escapes from the shelf to the open ocean. Biological di-nitrogen fixation is the main external source of nitrogen to the open ocean, i.e. beyond the continental shelf. Atmospheric deposition is the primary mechanism by which land based nitrogen inputs, and hence human perturbations of the nitrogen cycle, reach the open ocean. We estimate that anthropogenic inputs are currently leading to an increase in overall ocean carbon sequestration of ~0.4% (equivalent to an uptake of 0.15 Pg C yr -1 and less than the Duce et al., 2008 estimate). The resulting reduction in climate change forcing from this ocean CO 2 uptake is offset to a small extent by an increase in ocean N 2 O emissions. We identify four important feedbacks in the ocean atmosphere nitrogen system that need to be better quantified to improve our understanding of the perturbation of ocean biogeochemistry by atmospheric nitrogen inputs. These feedbacks are recycling of (1) ammonia and (2) organic nitrogen from the ocean to the atmosphere and back, (3) the suppression of nitrogen fixation by increased nitrogen concentrations in surface waters from atmospheric deposition, and (4) increased loss of nitrogen from the ocean by denitrification due to increased productivity stimulated by atmospheric inputs.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...