GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • small particles  (2)
Document type
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 3 (1983), S. 97-113 
    ISSN: 1572-8986
    Keywords: Knudsen effect ; heat transfer ; small particles ; thermal plasmas ; analytical studies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract The Knudsen effect on heat transfer to a particle exposed to a thermal plasma is important for many practical situations experienced in plasma chemistry and plasma processing. This paper provides theoretical results of this effect based on the “heat conduction potential jump” approach. It is shown that a correction factor which depends on the Knudsen number must be introduced into the expressions for heat fluxes obtained previously based on the continuum approach. The Knudsen effect is stronger for smaller particles and it is also more pronounced for an Ar-H2 plasma (compared to Ar and nitrogen plasmas at the same temperature). Since the Knudsen effect depends on the surface temperature of a particle, calculation of particle heating becomes more complicated.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 2 (1982), S. 185-212 
    ISSN: 1572-8986
    Keywords: Heat and mass transfer ; small particles ; thermal plasmas ; exact and approximate solutions ; analytical studies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract This paper is concerned with an analytical study of the heat and mass transfer process of a single particle exposed to a thermal plasma, with emphasis on the effects which evaporation imposes on heat transfer from the plasma to the particle. The results refer mainly to an atmospheric-pressure argon plasma and, for comparison purposes, an argon-hydrogen mixture and a nitrogen plasma are also considered in a temperature range from 3000 to 16,000 K. Interactions with water droplets, alumina, tungsten, and graphite particles are considered in a range of small Reynolds numbers typical for plasma processing of fine powders. Comparisons between exact solutions of the governing equations and approximate solutions indicate the parameter range for which approximate solutions are valid. The time required for complete evaporation of a given particle can be determined from calculated values of the vaporization constant. This constant is mainly determined by the boiling (or sublimation) temperature of the particles and the density of the condensed phase. Evaporation severely reduces heat transfer to a particle and, in general, this effect is more pronounced for materials with low latent heat of evaporation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...