GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • precipitation  (1)
  • 1
    ISSN: 1573-515X
    Keywords: isotopes ; mass balances ; precipitation ; sulfur ; watersheds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Sulfur deposition in the northeastern U.S. has been decreasing since the 1970s and there has been a concomitant decrease in the SO 4 2− lost from drainage waters from forest catchments of this region. It has been established previously that the SO 4 2− lost from drainage waters exceeds SO 4 2− inputs in bulk precipitation, but the cause for this imbalance has not been resolved. The use of stable S isotopes and the availability of archived bulk precipitation and stream water samples at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire provided a unique opportunity to evaluate potential sources and sinks of S by analyzing the long-term patterns (1966–1994) of the δ34S values of SO 4 2− . In bulk precipitation adjacent to the Ecosystem Laboratory and near Watershed 6 the δ34S values were greater (mean: 4.5 and 4.21, respectively) and showed more variation (variance: 0.49 and 0.30) than stream samples from Watersheds 5 (W5) and 6 (W6) (mean: 3.2 and 3.7; variance: 0.09 and 0.08, respectively). These results are consistent with other studies in forest catchments that have combined results for mass balances with stable S isotopes. These results indicate that for those sites, including the HBEF, where atmospheric inputs are ≤10 kg S ha−1 yr−1, most of the deposited SO 4 2− cycles through the biomass before it is released to stream water. Results from W5, which had a whole-tree harvest in 1983–1984 showed that adsorption/desorption processes play an important role in regulating net SO 4 2− retention for this watershed-ecosystem. Although the isotopic results suggest the importance of S mineralization, conclusive evidence that there is net mineralization has not yet been shown. However, S mass balances and the isotopic result are consistent with the mineralization of organic S being a major contributor to the SO 4 2− in stream waters at the HBEF.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...