GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • photosynthesis  (2)
Document type
Keywords
Publisher
Years
  • 1
    ISSN: 1573-5176
    Keywords: algal growth ; Porphyra ; inorganic carbon (Ci) ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthetic (oxygen evolution) and growth (biomass increase) responses to ambient pH and inorganic carbon (Ci) supply were determined for Porphyralinearis grown in 0.5 L glass cylinders in the laboratory, or in 40 L fibreglass outdoor tanks with running seawater. While net photosynthetic rates were uniform at pH 6.0–8.0, dropping only at pH 8.7, growth rates were significantly affected by pH levels other than that of seawater (c. pH 8.3). In glass cylinders, weekly growth rates averaged 76% at external pH 8.0, 13% at pH 8.7 and 26% at pH 7.0. Photosynthetic O2 evolution on a daily basis(i.e. total O2 evolved during day time less total O2 consumed during night time) was similar to the growth responses at all experimental pH levels, apparently due to high dark respiration rates measured at acidic pH. Weekly growth rates averaged 53% in algae grown in fibreglass tanks aerated with regular air (360 mg L-1 CO2) and 28% in algae grown in tanks aerated with CO2-enriched air (750 mg L-1 CO2). The pH of the seawater medium in which P. linear is was grown increased slightly during the day and only rarely reached 9.0. The pH at the boundary layer of algae submerged in seawater increased in response to light reaching, about pH 8.9 within minutes, or remained unchanged for algae submerged in a CO2-free artificial sea water medium. Photosynthesis of P. linearissaturated at Ci concentrations of seawater (K0.5560 μM at pH 8.2) and showed low photosynthetic affinity for CO2(K0.5 61 μM) at pH 6.0. It is therefore concluded that P. linearisuses primarily CO2 with HCO3 - being an alternative source of Ci for photosynthesis. Its fast growth could be related to the enzyme carbonic anhydrase whose activity was detected intra- and extracellularly.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5176
    Keywords: desiccation ; growth ; growth model ; inorganic carbon ; nutrients ; photoperiod ; photosynthesis ; pigments ; Porphyra linearis ; PPF ; respiration ; temperature ; water velocity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of environmental parameters on the growthof Porphyra linearis gametophytes was examinedunder controlled conditions, and related to themultilinear regression growth model recently developedfor this seaweed under coastal conditions in theeastern Mediterranean. Growth chambers, a gradienttable, special culture devices and analytical methodswere combined for this culture study.The major factors significantly controlling thegrowth rate of the P. linearis gametophytein glass dishes were: photoperiod, temperature, agein culture, photosynthetic photon flux (PPF), salinityand water dynamics. Maximal growth occurred underdaylength of 12 h, medium temperature (15–20 °C), low PPF (70–140 μmol photon m-2s-1), ambient salinity (30–40 ppt), 1–3 h ofdaily air exposure, and water velocity of 4 cm s-1.Photosynthesis and respiration rates weredominantly affected by daylength and temperature,while the concentration of pigments was dominantlyaffected by PPF and temperature.These conditions correspond well to the optimalnatural growth environment of this local species andare in agreement with the optimum estimated throughthe recently developed outdoor mathematical growthmodel.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...