GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-515X
    Keywords: ammonia volatilization ; nitrification ; denitrification ; chemodenitrification ; nitrogen cycling ; atmospheric chemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract There is increasing interest in the importance of nitrogen gas emissions from natural (non-agricultural) ecosystems with respect to local as well as global nitrogen budgets and with respect to the effects of nitrogen oxides on atmospheric ozone levels and global warming. The volatile forms of nitrogen of common interest are ammonia (NH3), nitrous oxide, (N2O), dinitrogen (N2), and NOx (principally NO + NO2). It is often difficult to attribute emissions of these compounds from soils to a single process because they are produced by a variety of common biogeochemical mechanisms. Although environmental conditions in the soil often appear to favor nitrogen gas emissions, the potential nitrogen gas emission rate from undisturbed ecosystems is rarely approached. The best estimates to date suggest that nitrogen gas emission rates from undisturbed ecosystems typically range from 〉 1 to perhaps 10 or 20 kg N ha-1 yr-1. Under certain conditions, however, emission rates may be much higher. For example, excreta from animals in grasslands may elevate ammonia volatilization up to 100 kg N ha-1 yr-1 depending on grazer density; tidal input of nutrients to coastal wetlands may support denitrification rates of several hundred kg N ha-1 yr-1 . Excepting such cases, gaseous nitrogen losses are probably a small component of the local nitrogen budget in most undisturbed ecosystems. However, emissions from undisturbed soils are an important component of the global source strengths for (N2O + N2), N2O and NOx (50%, 21%, and 10% respectively). Emission rates of N2O from natural ecosystems are higher than assumed previously by perhaps 10 times. Large-scale disturbance may have a stimulatory effect on nitrogen emission rates which could have important effects on global nitrogen budgets. There is a need for more sophisticated methods to account for natural temporal and spatial variations of emissions rates, to more accurately and precisely assess their global source strengths.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 4 (1987), S. 313-348 
    ISSN: 1573-515X
    Keywords: nitrogen cycling ; marshes ; bogs ; fens ; swamps ; mires ; sediments ; vegetation ; microbiology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The biogeochemistry of N in freshwater wetlands is complicated by vegetation characteristics that range from annual herbs to perennial woodlands; by hydrologic characteristics that range from closed, precipitation-driven to tidal, riverine wetlands; and by the diversity of the nitrogen cycle itself. It is clear that sediments are the single largest pool of nitrogen in wetland ecosystems (100's to 1000's g N m-2) followed in rough order-of-magnitude decreases by plants and available inorganic nitrogen. Precipitation inputs (〈 1–2 g N m-2 yr-1) are well known but other atmospheric inputs, e.g. dry deposition, are essentially unknown and could be as large or larger than wet deposition. Nitrogen fixation (acetylene reduction) is an important supplementary input in some wetlands (〈 〈 1–3 g N m-2 yr-1) but is probably limited by the excess of fixed nitrogen usually present in wetland sediments. Plant uptake normally ranges from a few g N m-2 yr-1 to ∼ 35 g N m-2 yr-1 with extreme values of up to ∼ 100g N m-2 yr-1 Results of translocation experiments done to date may be misleading and may call for a reassessment of the magnitude of both plant uptake and leaching rates. Interactions between plant litter and decomposer microorganisms tend, over the short-term, to conserve nitrogen within the system in immobile forms. Later, decomposers release this nitrogen in forms and at rates that plants can efficiently reassimilate. The NO3 formed by nitrification (〈 0.1 to 10 g N m-2 yr-1 has several fates which may tend to either conserve nitrogen (uptake and dissimilatory reduction to ammonium) or lead to its loss (denitrification). Both nitrification and denitrification operate at rates far below their potential and under proper conditions (e.g. draining or fluctuating water levels) may accelerate. However, virtually all estimates of denitrification rates in freshwater wetlands are based on measurements of potential denitrification, not actual denitrification and, as a consequence, the importance of denitrification in these ecosystems may have been greatly over estimated. In general, larger amounts of nitrogen cycle within freshwater wetlands than flow in or out. Except for closed, ombrotrophic systems this might seem an unusual characteristic for ecosystems that are dominated by the flux of water, however, two factors limit the opportunity for N loss. At any given time the fraction of nitrogen in wetlands that could be lost by hydrologic export is probably a small fraction of the potentially mineralizable nitrogen and is certainly a negligible fraction of the total nitrogen in the system. Second, in some cases freshwater wetlands may be hydrologically isolated so that the bulk of upland water flow may pass under (in the case of floating mats) or by (in the case of riparian systems) the biotically active components of the wetland. This may explain the rather limited range of N loading rates real wetlands can accept in comparison to, for example, percolation columns or engineered marshes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...