GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • lignin  (1)
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (1)
Document type
  • Articles  (1)
Publisher
Years
Topic
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (1)
  • 1
    ISSN: 1573-5036
    Keywords: carbon ; cellulose ; decomposition ; δ13C ; δ15N ; lignin ; nitrogen ; stable isotopes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Decay processes in an ecosystem can be thought of as a continuum beginning with the input of plant litter and leading to the formation of soil organic matter. As an example of this continuum, we review a 77-month study of the decay of red pine (Pinus resinosa Ait.) needle litter. We tracked the changes in C chemistry and the N pool in red pine (Pinus resinosa Ait.) needle litter during the 77-month period using standard chemical techniques and stable isotope, analyses of C and N. Mass loss is best described by a two-phase model: an initial phase of constant mass loss and a phase of very slow loss dominated by degradation of ‘lignocellulose’ (acid soluble sugars plus acid insoluble C compounds). As the decaying litter enters the second phase, the ratio of lignin to lignin and cellulose (the lignocellulose index, LCI) approaches 0.7. Thereafter, the LCI increases only slightly throughout the decay continuum indicating that acid insoluble materials (‘lignin’) dominate decay in the latter part of the continuum. Nitrogen dynamics are also best described by a two-phase model: a phase of N net immobilization followed by a phase of N net mineralization. Small changes in C and N isotopic composition were observed during litter decay. Larger changes were observed with depth in the soil profile. An understanding of factors that control ‘lignin’ degradation is key to predicting the patterns of mass loss and N dynamics late in decay. The hypothesis that labile C is needed for ‘lignin’ degradation must be evaluated and the sources of this C must be identified. Also, the hypothesis that the availability of inorganic N slows ‘lignin’ decay must be evaluated in soil systems.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...