GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • fault plane heterogeneity  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 140 (1993), S. 365-390 
    ISSN: 1420-9136
    Keywords: Rupture process ; fault plane heterogeneity ; earthquake doublet ; subduction zone ; Solomon Islands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In the Solomon Islands and New Britain subduction zones, the largest earthquakes commonly occur as pairs with small separation in time, space and magnitude. This doublet behavior has been attributed to a pattern of fault plane heterogeneity consisting of closely spaced asperities such that the failure of one asperity triggers slip in adjacent asperities. We analyzed body waves of the January 31, 1974,M w =7.3, February 1, 1974,M w =7.4, July 20, 1975 (14∶37)M w =7.6 and July 20, 1975 (19∶45),M w =7.3 doublet events using an iterative, multiple station inversion technique to determine the spatio-temporal distribution of seismic moment release associated with these events. Although the 1974 doublet has smaller body wave moments than the 1975 events, their source histories are more complicated, lasting over 40 seconds and consisting of several subevents located near the epicentral regions. The second 1975 event is well modeled by a simple point source initiating at a depth of 15 km and rupturing an approximate 20 km region about the epicenter. The source history of the first 1975 event reveals a westerly propagating rupture, extending about 50 km from its hypocenter at a depth of 25 km. The asperities of the 1975 events are of comparable size and do not overlap one another, consistent with the asperity triggering hypothesis. The relatively large source areas and small seismic moments of the 1974 doublet events indicate failure of weaker portions of the fault plane in their epicentral regions. Variations in the “roughness” of the bathymetry of the subducting plate, accompanying subduction of the Woodlark Rise, may be responsible for changes in the mechanical properties of the plate interface. To understand how variations in fault plane coupling and strength affect the interplate seismicity pattern, we relocated 85 underthrusting earthquakes in the northern Solomon Islands Are since 1964. Relatively few smaller magnitude underthrusting events overlap the Solomon Islands doublet asperity regions, where fault coupling and strength are inferred to be the greatest. However, these asperity regions have been the sites of several previous earthquakes withM s ≥7.0. The source regions of the 1974 doublet events, which we infer to be mechanically weak, contain many smaller magnitude events but have not generated any otherM s ≥7.0 earthquakes in the historic past. The central portion of the northern Solomon Islands Arc between the two largest doublet events in 1971 (studied in detail bySchwartz et al., 1989a) and 1975 contains the greatest number of smaller magnitude underthrusting earthquakes. The location of this small region sandwiched between two strongly coupled portions of the plate interface suggest that it may be the site of the next large northern Solomon Islands earthquake. However, this region has experienced no known earthquakes withM s ≥7.0 and may represent a relatively aseismic portion of the subduction zone.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...