GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0887-6266
    Keywords: star polymer ; cationic polymerization ; living polymerization ; vinyl ethers ; dynamic light scattering ; hydrodynamic radius ; molecular mechanics ; computer simulation ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The sizes and shapes of star-shaped poly(vinyl ether)s, prepared by living cationic polymerization, were studied by dynamic light scattering and molecular mechanics-based computer simulation. The hydrodynamic radii (Rh) of star poly(isobutyl vinyl ether)s (4a; M̄w = 2.2 × 104 - 1.7 × 105) determined by dynamic light scattering were in the range from 30 to 90 Å in tetrahydrofuran or ethyl acetate. Consistent with the expected multiarmed architecture of 4a, the radius for a given number (f) of arms per molecule increased with the degree of polymerization [DP(arm)] of the arms, and for a fixed DP(arm), the radius increased with f. The relationship between arm number f and the “shrinking” factor h [Rh(star)/Rh(linear)] was consistent with multibranched structures for the star polymers. These results are supported by those for the molecular weight itself; the apparent weight-average molecular weights by size-exclusion chromatography are less than the corresponding absolute values by static light scattering. The dependence of h on f suggests some degree of asymmetry in the star shape. Similar results were also obtained by the computer simulation of potential energy-minimized conformations of the arms, which implied almost spherical but slightly asymmetric shapes. The computer simulation also demonstrated that the star polymer (4b) with pendant hydroxyl groups in the arms is smaller in size than the corresponding alkyl (isobutyl) (4a) with the identical arm number and arm degree of polymerization. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...