GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 8 (1992), S. 512-518 
    ISSN: 1573-0972
    Keywords: Dehalogenases ; dehalogenation ; methylotrophs ; Pseudomonas ; trichloroacetic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A pure bacterial culture and a two-membered mixed culture were isolated that degraded trichloroacetic acid if a second, readily metabolizable substrate was present in the growth medium. Previous doubts over the microbial dehalogenation of trichloroacetic acid (TCA) may be due to its inability to act as a sole carbon and energy source. TCA dehalogenation was associated with conventional 2-haloalkanoic acid dehalogenases but oxalate, the putative dehalogenase product, was not detected. CO2 was produced rapidly and concomitantly with Cl− ion release during dehalogenation of TCA. An alternative mechanism is suggested for TCA dehalogenation via an initial decarboxylation reaction. This mechanism predicts that carbon monoxide is a product of TCA decarboxylation and it was significant that one of the organisms isolated,Pseudomonas carboxydohydrogens, was a carboxytroph and a second was an unidentified facultative methylotroph.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0268-2575
    Keywords: bioprocessing ; clean technology ; commercial process ; dehalogenation ; wet-strength resins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: ---The modification of existing chemical manufacturing processes to selectively remove unwanted chemicals in products, offers a realistic approach to novel clean technologies. Adjunct biotechnological processing offers a means to achieve the manufacture of new environmentally enhanced products (EEPs). This paper describes the development and implementation of a bioprocess for the manufacture of an enhanced paper chemical. The process was integrated into existing manufacturing plants involved in the production of neutral curing poly(aminoamide) chemicals which are used commercially to impart wet-strength to paper products such as tissues and towels (e.g. Kymene™ wet-strength resins). A consequence of the epichlorohydrin chemistry involved in the polymer's manufacture, haloalcohols (predominantly, 1,3-dichloropropan-2-ol (DCP) and 1-chloropropanediol (3-CPD)) contaminate the product. The objective was to reduce the concentration of the two haloalcohols in Kymene™-SLX wet-strength resins (c. 8000 ppm db) without affecting the performance of the product. A two-membered bacterial consortium was used in an aerobic stirred tank bioreactor system which was capable of rapidly reducing the concentrations of DCP and CPD in an aqueous solution of the wet-strength resin to less than 1 ppm and 5 ppm respectively. A 3000 dm3 bioreactor was integrated into two established manufacturing plants, generating a reliable and predictable process to enhance the value of the neutral curing wet-strength chemical. ©1997 SCI
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...