GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-12-07
    Description: Future precipitation levels remain uncertain because climate models have struggled to reproduce observed variations in temperature‐precipitation correlations. Our analyses of Holocene proxy‐based temperature‐precipitation correlations and hydrological sensitivities from 2,237 Northern Hemisphere extratropical pollen records reveal a significant latitudinal dependence and temporal variations among the early, middle, and late Holocene. These proxy‐based variations are largely consistent with patterns obtained from transient climate simulations (TraCE21k). While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene, the mid‐latitude pattern is temporally and spatially more variable. In particular, we identified a reversal from positive to negative temperature‐precipitation correlations in the eastern North American and European mid‐latitudes from the early to mid‐Holocene that mainly related to slowed down westerlies and a switch to moisture‐limited convection under a warm climate. Our palaeoevidence of past temperature‐precipitation correlation shifts identifies those regions where simulating past and future precipitation levels might be particularly challenging.
    Description: Plain Language Summary: Predicting future precipitation levels reliably is more challenging than predicting temperature change. Accordingly, we need to understand the relationship between temperature and precipitation and its changes in space and time. We used climate proxy‐data derived from 2,237 pollen records from lake sediments and peats from the Northern Hemisphere extratropics for the early, middle, and late Holocene (i.e., 12,000–8,000, 8,000–4,000, 4,000–0 years before present, respectively). Our results reveal a significant latitudinal dependence and temporal variation of the temperature‐precipitation relationship. These proxy‐based variations are largely consistent with patterns obtained from simulations using climate models. While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene (i.e., warm conditions co‐occur with wet conditions), the mid‐latitude pattern is temporally and spatially more variable. In particular, we identified a reversal to negative temperature‐precipitation correlations in the eastern North American and European mid‐latitudes from the early to middle Holocene. We hypothesize that weak westerly circulation, warm climate, and climate‐soil feedbacks limited evaporation and as such reduced convection during the middle Holocene which led to a negative relationship between temperature and precipitation. Our analysis of past temperature‐precipitation correlation shifts identifies regions where past changes in the temperature‐precipitation relationships are variable and thus where predicting precipitation might be particularly challenging in a warming climate.
    Description: Key Points: We analyzed Holocene temperature‐precipitation correlations and hydrological sensitivities using climate proxy (pollen) and model data from Northern Hemisphere extratropics. We found reversals to negative temperature‐precipitation correlations from the cold early Holocene to the warm mid‐Holocene likely related to moisture‐limited convection. Correlations and hydrological sensitivities were mostly stable positive in polar and extratropical monsoon‐areas.
    Description: EC European Research Council http://dx.doi.org/10.13039/501100000781
    Description: PALMOD
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: https://doi.pangaea.de/10.1594/PANGAEA.930512
    Description: https://doi.org/10.5281/zenodo.5910989
    Description: https://zenodo.org/record/7038402%23.YxBL1uzP3V8
    Keywords: ddc:551 ; ddc:561 ; Holocene ; pollen ; Northern Hemisphere ; temperature-precipation correlations
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-01
    Description: Characterizing the variability across timescales is important for understanding the underlying dynamics of the Earth system. It remains challenging to do so from palaeoclimate archives since they are more often than not irregular, and traditional methods for producing timescale-dependent estimates of variability, such as the classical periodogram and the multitaper spectrum, generally require regular time sampling. We have compared those traditional methods using interpolation with interpolation-free methods, namely the Lomb–Scargle periodogram and the first-order Haar structure function. The ability of those methods to produce timescale-dependent estimates of variability when applied to irregular data was evaluated in a comparative framework, using surrogate palaeo-proxy data generated with realistic sampling. The metric we chose to compare them is the scaling exponent, i.e. the linear slope in log-transformed coordinates, since it summarizes the behaviour of the variability across timescales. We found that, for scaling estimates in irregular time series, the interpolation-free methods are to be preferred over the methods requiring interpolation as they allow for the utilization of the information from shorter timescales which are particularly affected by the irregularity. In addition, our results suggest that the Haar structure function is the safer choice of interpolation-free method since the Lomb–Scargle periodogram is unreliable when the underlying process generating the time series is not stationary. Given that we cannot know a priori what kind of scaling behaviour is contained in a palaeoclimate time series, and that it is also possible that this changes as a function of timescale, it is a desirable characteristic for the method to handle both stationary and non-stationary cases alike.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Dynamics, 11 (2). pp. 447-468.
    Publication Date: 2021-01-08
    Description: It is virtually certain that the mean surface temperature of the Earth will continue to increase under realistic emission scenarios, yet comparatively little is known about future changes in climate variability. This study explores changes in climate variability over the large range of climates simulated by the Coupled Model Intercomparison Project Phase 5 and 6 (CMIP5/6) and the Paleoclimate Modeling Intercomparison Project Phase 3 (PMIP3), including time slices of the Last Glacial Maximum, the mid-Holocene, and idealized experiments (1 % CO2 and abrupt4×CO2). These states encompass climates within a range of 12 ∘C in global mean temperature change. We examine climate variability from the perspectives of local interannual change, coherent climate modes, and through compositing extremes. The change in the interannual variability of precipitation is strongly dependent upon the local change in the total amount of precipitation. At the global scale, temperature variability is inversely related to mean temperature change on intra-seasonal to multidecadal timescales. This decrease is stronger over the oceans, while there is increased temperature variability over subtropical land areas (40∘ S–40∘ N) in warmer simulations. We systematically investigate changes in the standard deviation of modes of climate variability, including the North Atlantic Oscillation, the El Niño–Southern Oscillation, and the Southern Annular Mode, with global mean temperature change. While several climate modes do show consistent relationships (most notably the Atlantic Zonal Mode), no generalizable pattern emerges. By compositing extreme precipitation years across the ensemble, we demonstrate that the same large-scale modes influencing rainfall variability in Mediterranean climates persist throughout paleoclimate and future simulations. The robust nature of the response of climate variability, between cold and warm climates as well as across multiple timescales, suggests that observations and proxy reconstructions could provide a meaningful constraint on climate variability in future projections.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Future precipitation levels remain uncertain because climate models have struggled to reproduce observed variations in temperature-precipitation correlations. Our analyses of Holocene proxy-based temperature-precipitation correlations and hydrological sensitivities from 2237 Northern Hemisphere extratropical pollen records reveal a significant latitudinal dependence and temporal variations among the early, middle, and late Holocene. These proxy-based variations are largely consistent with patterns obtained from transient climate simulations (TraCE21k). While high latitudes and subtropical monsoon areas show mainly stable positive correlations throughout the Holocene, the mid-latitude pattern is temporally and spatially more variable. In particular, we identified a reversal from positive to negative temperature-precipitation correlations in the eastern North American and European mid-latitudes from the early to mid-Holocene that mainly related to slowed down westerlies and a switch to moisture-limited convection under a warm climate. Our palaeoevidence of past temperature-precipitation correlation shifts identifies those regions where simulating past and future precipitation levels might be particularly challenging.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-14
    Description: A mismatch between model- and proxy-based Holocene climate change, known as the Holocene conundrum, may partially originate from the poor spatial coverage of climate reconstructions in, for example, Asia, limiting the number of grid-cells for model-data comparisons. Here we investigate hemispheric, latitudinal, and regional mean time-series as well as anomaly maps of pollen-based reconstructions of mean annual temperature, mean July temperature, and annual precipitation from 1676 records in the Northern Hemisphere extratropics. Temperature trends show strong latitudinal patterns and differ between (sub-)continents. While the circum-Atlantic regions in Europe and eastern North America show a pronounced mid-Holocene temperature maximum, western North America shows only weak changes and Asia mostly a continuous Holocene temperature increase but with strong latitudinal differences. Likewise, precipitation trends show certain regional peculiarities such as the pronounced mid-Holocene optimum between 30 and 40° N in Asia and Holocene increasing trends in Europe and western North America which can all be linked with Holocene changes of the regional circulation pattern linked to temperature change. Given a background of strong regional heterogeneity, we conclude that the calculation of global or hemispheric means which initiated the Holocene conundrum debate should focus more on understanding the spatio-temporal patterns and their regional drivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3CVAS 3rd workshop: Spatio-temporal structure of forced and unforced variability across the Holocene: from proxies to process, University of Washington, Seattle, USA, 2019-01-23-2019-01-25
    Publication Date: 2020-05-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3REKLIM Berlin 2019, Umweltforum, Berlin, Germany, 2019-09-23-2019-09-25
    Publication Date: 2020-05-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3Geophysical Research Letters, 45(9), pp. 4248-4254, ISSN: 00948276
    Publication Date: 2020-05-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  EPIC3Variability of surface climate in simulations of past and future, Earth System Dynamics Discussions
    Publication Date: 2020-05-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3EGU General Assembly 2020, Online, 2020-05-04-2020-05-08Variability of surface climate in simulations of past and future, EGU General Assembly 2020: Sharing Geosciences Online
    Publication Date: 2020-05-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...