GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • protein fibrils  (2)
  • circular dichroic spectropolarimeter  (1)
  • 1
    ISSN: 1573-3904
    Keywords: β-sandwich ; de novo design ; protein engineering ; protein fibrils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The inverse protein-folding problem has been explored by designing de novo the betabellin target structure (a 64-residue β-sandwich protein), synthesizing a 32-residue peptide chain (HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p = DPro, k = DLys, and h = DHis) that might fold into this structure, and studying how its disulfide-bridged form (betabellin 15D) folds in 10 mM ammonium acetate with and without Cu2+. Circular dichroic spectropolarimetry indicated that at pH 5.8, 6.4, or 6.7 betabellin 15D exhibited β-sheet structure in the presence of Cu2+ but not in its absence. Electrospray mass spectrometry demonstrated that at pH 6.3 each molecule of betabellin 15D bound one or two Cu(II) ions. Electron microscopy showed that at pH 6.7 betabellin 15D formed short broad fibrils in the presence of Cu2+ but not in its absence. The observed width of the fibrils (7 ± 2 nm) was consistent with the width (6.8 nm) of a structural model of a fibril that contained two adjacent rows of betabellin 15D β-sandwiches joined lengthwise by multiple intersheet hydrogen bonds and widthwise by multiple Cu(II)-imidazole bonds. Electron paramagnetic resonance spectrometry revealed that some pairs of Cu(II) ions in a Cu(II)/betabellin 15D complex were magnetically coupled, which is consistent with the structural model of the Cu(II)/betabellin 15D fibril.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-3904
    Keywords: β-sandwich ; de novo design ; protein engineering ; protein fibrils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary The inverse protein-folding problem has been explored by designing de novo the betabellin target structure (a 64-residue β-sandwich protein), synthesizing a 32-residue peptide chain (HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, wherep=DPro,k=DLys, andh=DHis) that might fold into this structure, and studying how its disulfide-bridged form (betabellin 15D) folds in 10 mM ammonium acetate with and without Cu2+. Circular dichroic spectropolarimetry indicated that at pH 5.8, 6.4, or 6.7 betabellin 15D exhibited β-sheet structure in the presence of Cu2+ but not in its absence. Electrospray mass spectrometry demonstrated that at pH 6.3 each molecule of betabellin 15D bound one or two Cu(II) ions. Electron microscopy showed that at pH 6.7 betabellin 15D formed short broad fibrils in the presence of Cu2+ but not in its absence. The observed width of the fibrils (7±2 nm) was consistent with the width (6.8nm) of a structural model of a fibril that contained two adjacent rows of betabellin 15D β-sandwiches joined lengthwise by multiple intersheet hydrogen bonds and widthwise by multiple Cu(II)-imidazole bonds. Electron paramagnetic resonance spectrometry revealed that some pairs of Cu(II) ions in a Cu(II)/betabellin 15D complex were magnetically coupled, which is consistent with the structural model of the Cu(II)/betabellin 15D fibril.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of peptide research and therapeutics 6 (1999), S. 33-43 
    ISSN: 1573-3904
    Keywords: 4-amino-l-proline ; circular dichroic spectropolarimeter ; proline-II helix ; protein engineering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract This paper describes the engineering of braced tripod proteins for use as molecular frameworks. Specifically, a 30-residue tripod-shaped protein with three proline-II helical legs braced by an iron(II)tris(bipyridine) complex was modularly designed, chemically synthesized, and biophysically characterized. Three copies of a 10-residue leg peptide were covalently linked through sulfide bonds to an N-terminal apex (1,3,5-tris(methylene)benzene) and by amide bonds to the brace (FeII(Mbc)3: Mbc is 4′-methyl-2,2′-bipyridine-4-carbonyl). The leg peptide (H-Cys-Pro5-Pra(Mbc)-Pro3-NH2: Pra is cis-4-amino-l-proline) was assembled by the solid-phase method using Boc-Pra(Mbc)-OH, which was synthesized in 75% overall yield by coupling Mbc-OH to the 4-amino group of Boc-Pra-OCH3 and saponifying the methyl ester group.The iron(II)-braced tripod was assembled by S-alkylation of three copies of the leg peptide with 1,3,5-tris(bromomethyl)benzene followed by ligation of Fe2+ to the resulting unbraced tripod. The CD spectrum of the iron(II)-braced tripod showed a positive MLCT band at 570 nm and a negative π–π* band at 312 nm, so its FeII(Mbc)3 brace was predominantly in the Δ configuration. In a mostly acetonitrile solution at 25 °C, the leg peptide and the unbraced tripod isomerized from the proline-II helical form into the proline-I helical form but the iron(II)-braced tripod remained in the proline-II helical form.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...