GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 147 (1995), S. 99-103 
    ISSN: 1573-4919
    Keywords: cardiac sarcolemma ; (Na,K)-ATPase ; Mg-ATPase ; Ca-ATPase ; enzyme kinetics ; activation energy ; ischemia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract To elucidate the effect of global ischemia on the energy utilizing processes, regarding the molecular principles, the kinetic and thermodynamic properties of the sarcolemmal ATPases were investigated in the rat heart. The activation energy for hydrolysis of ATP during ischemia was higher when the reaction was catalyzed by Ca-ATPase or Mg-ATPase. For the Na,K-ATPase reaction, no changes in the activation energy were observed. With respect to the enzyme kinetics, ischemia in a timedependent manner induced important alterations in KM and Vmax values of Na,K-ATPase, Ca-ATPase and Mg-ATPase. The Vmax value decreased significantly already after 15 min of ischemia, and it also remained low after 30, 45 and 60 min for all 3 enzymes. The significant diminution of KM values occurred later in the 30th min for Ca-ATPase, in the 45th min for Na,K-ATPase. The observed drop in KM indicates the increase in the affinity of the enzymes to substrate, suggesting thus the adaptation to ischemic conditions on the molecular level. This effect could be attributed to some conformational changes of the protein molecule in the vicinity of the ATP-binding site developing after longer duration of ischemia.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...