GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • atmospheric chemistry  (1)
  • dissolved organic nitrogen  (1)
Document type
Publisher
Years
  • 1
    ISSN: 1573-515X
    Keywords: ammonium ; dissolved organic nitrogen ; groundwater chemistry ; nitrate ; riparian zone ; tropical rain forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved inorganic N (DIN; NH4 +- and NO3 −-N) were low in stream water (〈 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3 −-N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream, DIN shifted to dominance by NH4 +-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON rather than inorganic N. Concentrations of NH4 + and NO3 − were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water. Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly modify the importance of specific biotic components.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: ammonia volatilization ; nitrification ; denitrification ; chemodenitrification ; nitrogen cycling ; atmospheric chemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract There is increasing interest in the importance of nitrogen gas emissions from natural (non-agricultural) ecosystems with respect to local as well as global nitrogen budgets and with respect to the effects of nitrogen oxides on atmospheric ozone levels and global warming. The volatile forms of nitrogen of common interest are ammonia (NH3), nitrous oxide, (N2O), dinitrogen (N2), and NOx (principally NO + NO2). It is often difficult to attribute emissions of these compounds from soils to a single process because they are produced by a variety of common biogeochemical mechanisms. Although environmental conditions in the soil often appear to favor nitrogen gas emissions, the potential nitrogen gas emission rate from undisturbed ecosystems is rarely approached. The best estimates to date suggest that nitrogen gas emission rates from undisturbed ecosystems typically range from 〉 1 to perhaps 10 or 20 kg N ha-1 yr-1. Under certain conditions, however, emission rates may be much higher. For example, excreta from animals in grasslands may elevate ammonia volatilization up to 100 kg N ha-1 yr-1 depending on grazer density; tidal input of nutrients to coastal wetlands may support denitrification rates of several hundred kg N ha-1 yr-1 . Excepting such cases, gaseous nitrogen losses are probably a small component of the local nitrogen budget in most undisturbed ecosystems. However, emissions from undisturbed soils are an important component of the global source strengths for (N2O + N2), N2O and NOx (50%, 21%, and 10% respectively). Emission rates of N2O from natural ecosystems are higher than assumed previously by perhaps 10 times. Large-scale disturbance may have a stimulatory effect on nitrogen emission rates which could have important effects on global nitrogen budgets. There is a need for more sophisticated methods to account for natural temporal and spatial variations of emissions rates, to more accurately and precisely assess their global source strengths.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...