GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Vascular Biology and Microcirculation  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2016-11-03
    Description: We investigated the acute effects of glucagon-like peptide-1 (GLP-1), GLP-1(1–36), and GLP-1(7–36) on vascular endothelial growth factor-A (VEGFA)-induced endothelium-dependent signaling and vasodilation. Our hypothesis was that GLP-1 released from intestinal l -cells modulates processes related to PLC activation, Src, and endothelial NOS (eNOS) signaling, thereby controlling endothelial vessel tone. By using RT-PCR analysis, we found mRNA for the GLP-1 receptor (GLP-1R) in human dermal microvascular endothelial cells (HDMEC), human retinal microvascular endothelial cells, and rat arteries. In isolated rat mesenteric resistance arteries precontracted with the thromboxane analog U46619 to 80–90% of maximum contraction, VEGFA (25 ng/ml) caused a small and gradual relaxation (28.9 ± 3.9%). Pretreatment of arteries with either GLP-1(1–36) (500 nM) or GLP-1(7–36) (1 nM) abolished the VEGFA-induced relaxation. VEGFA-induced relaxations were also inhibited in endothelial-denuded arteries and in arteries pretreated with the nitric oxide synthase (NOS) inhibitor, N-nitro- l -arginine methyl ester (100 μM). In vivo studies on male Wistar rats also revealed that GLP-1(7–36) inhibited VEGFA-induced vasodilation of the same arteries. In isolated endothelial cells, GLP-1(1–36) and GLP-1(7–36) caused a reduction in VEGFA-induced phosphorylation of PLC. Ca 2+ imaging of endothelial cells and rat mesenteric resistance arteries using fura-2, revealed that both GLP-1 analogs caused a reduction in VEGFA-induced Ca 2+ signaling. GLP-1(1–36) also reduced VEGFA-induced eNOS phosphorylation in HDMEC. In conclusion, GLP-1 reduced relaxation induced by VEGFA in resistance arteries by inhibiting VEGFR2-mediated Ca 2+ signaling and endothelial NO synthesis. GLP-1, on its own, also induced phosphorylation of Src and ERK1/2 that can lead to proliferation and is implicated in vessel permeability.
    Keywords: Vascular Biology and Microcirculation
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...