GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Vaccines. ; Electronic books.
    Description / Table of Contents: By addressing considerations of efficacy and safety of drugs and chemicals used to combat COVID-19, virtually in real-time, this book documents and highlights the advances in science and place the toxicology, pharmaceutical science, public health and medical community in a better position to advise in future epidemics.
    Type of Medium: Online Resource
    Pages: 1 online resource (694 pages)
    Edition: 1st ed.
    ISBN: 9781839166846
    DDC: 016.35960973
    Language: English
    Note: Cover -- The Coronavirus Pandemic and the Future Volume 2: Virology, Epidemiology, Translational Toxicology and Therapeutics -- Dedication -- Foreword -- Preface -- Contents -- Contents -- Chapter 1 - In Silico Approaches for Drug Repurposing for SARS-CoV- 2 Infection -- 1.1 Introduction -- 1.1.1 What is Drug Repurposing -- 1.1.2 Why Drug Repurposing -- 1.1.2.1 Regulatory Considerations -- 1.1.3 Why Drug Repurposing for COVID-19? -- 1.1.4 Why In Silico Approaches for Drug Repurposing -- 1.1.4.1 Gene Profiling -- 1.1.4.2 In Vitro Screening -- 1.1.4.3 Phenotypic Screening -- 1.1.4.4 Binding Assays for Target Interactions -- 1.1.4.5 Cellular Thermal Shift Assay -- 1.1.4.6 The In Silico Effort -- 1.2 Understanding SARS-CoV- 2 from an In Silico Perspective -- 1.2.1 Structural Proteins of SARS-CoV- 2 -- 1.2.1.1 Surface Spike Protein (S-protein) -- 1.2.1.2 Nucleocapsid Protein (N-protein) -- 1.2.1.3 Envelope Protein (E-protein) -- 1.2.1.4 Membrane Protein (M-protein) -- 1.2.2 Non-structural and Accessory Proteins of SARS-CoV- 2 -- 1.2.3 Structure of SARS-CoV- 2 Proteins -- 1.3 Structure-based Approaches for Drug Repurposing -- 1.3.1 Docking Studies in the Main Protease (Mpro/3CLpro) -- 1.3.1.1 Crystal Structures Used in Docking -- 1.3.1.2 Methods or Programs Used in Docking -- 1.3.1.3 Ligands and Databases Used for Screening -- 1.3.1.4 Molecular Dynamics Programs Used -- 1.3.1.5 Duration of MD Simulation -- 1.3.1.6 Free-energy Estimation Method Used -- 1.3.1.7 Analysis of Hit Drugs from Docking -- 1.3.1.8 Some Noteworthy Studies on Mpro -- 1.3.1.8.1 Study Reporting Good Correlation of Predicted Binding Affinity with Experiments.Huynh et al. performed MD simulation of apo and ... -- 1.3.1.8.2 Studies Using Pharmacophore or Shape-based Methods for Screening of Drugs. Arun. , 1.3.1.8.3 Novel Methods of Screening. Sencanski et al. reported a novel two-step approach to identify -- 1.3.1.8.4 Studies in which Important Observations are Reported.Jin et al. reported identification of lead compounds by combining structure... -- 1.3.2 Docking Studies in RNA-dependent RNA Polymerase -- 1.3.3 Docking Studies in Papain-like Protease -- 1.3.4 Docking Studies in the Nucleocapsid Protein (N-protein) -- 1.3.5 Docking Studies in the Spike Glycoprotein (S-protein) -- 1.3.6 Docking Studies in NSP1 -- 1.3.7 Docking Studies in NSP13/Helicase -- 1.3.8 Docking Studies in NSP15/Endonucleases -- 1.3.9 Docking Studies in NSP16 -- 1.3.10 Docking in Main Protease and Spike Glycoprotein -- 1.3.11 Docking in Multiple Structural Proteins -- 1.3.12 Docking in Proteases -- 1.3.13 Docking in Multiple Targets -- 1.3.13.1 Studies Involving Large Numbers of Targets -- 1.3.13.2 Studies Involving Main Protease and Other Targets -- 1.3.13.3 Studies on Mixed Targets -- 1.3.14 Discussion and Consensus Screening Protocol from the Reviewed Literature -- 1.4 Ligand-based Approaches for Drug Repurposing -- 1.4.1 QSAR-based Approaches -- 1.4.2 Pharmacophore-based Approaches -- 1.5 Other Approaches for Drug Repurposing -- 1.5.1 Machine Learning-based Methods -- 1.5.1.1 Machine Learning Using Molecular Descriptors -- 1.5.1.2 Machine Learning Using Docking Interactions -- 1.5.2 Pharmacology-based Network Analysis Methods -- 1.5.2.1 Protein-Protein Interactions -- 1.5.2.2 Expression Profiling -- 1.6 Understanding Human Targets in COVID-19 From an In Silico Perspective -- 1.6.1 Host Proteins Involved in the SARS-CoV- 2 Life Cycle -- 1.6.2 Host Response to SARS-CoV- 2 Infection -- 1.6.2.1 SARS-CoV- 2 Induced Immune Response -- 1.6.3 Structural Information of Human Proteins in COVID-19 -- 1.7 Structure-based Approaches for Drug Repurposing Using Human Proteins. , 1.7.1 Docking Studies in Angiotensin Converting Enzyme-2 -- 1.7.1.1 Targeting the ACE-2 Receptor -- 1.7.1.2 Targeting ACE-2 and Spike Receptor -- 1.7.1.3 Targeting ACE-2 and Spike Receptor in Addition to Network-based Associations -- 1.7.2 Docking Studies in Transmembrane Protease, Serine 2 (TMPRSS2) -- 1.7.3 Docking Studies in Glucose-Regulated Protein 78 (GRP78) -- 1.7.4 Docking Studies in Furin -- 1.7.5 Docking Studies in ARDS Targets -- 1.7.5.1 TNF-­α -- 1.8 Summary of Hits from Reviewed Literature -- 1.9 Concluding Remarks -- 1.10 Executive Summary -- Author Contributions -- Acknowledgements -- References -- Chapter 2 - Vaccination and Vaccines for COVID-19 -- 2.1 Introduction -- 2.2 Vaccination in the Context of a Pandemic Outbreak -- 2.3 COVID-19 -- 2.3.1 Specific Strategies for COVID-19 -- 2.3.1.1 DNA Vaccines -- 2.3.1.2 mRNA Vaccines -- 2.3.1.3 Attenuated Vaccines -- 2.4 Mental Health Aspects of Immunization and Vaccination -- 2.5 Vaccines for COVID-19 -- 2.5.1 SARS-CoV-2 -- 2.5.2 Immune Response to SARS-CoV- 2 and Previous Coronavirus Infections -- 2.5.3 Platforms for COVID-19 Vaccine Development -- 2.5.3.1 DNA-based Vaccines -- 2.5.3.1.1 Inovio.Inovio Pharmaceuticals is an American company based in Plymouth Meeting, Pennsylvania, USA, that specializes in manufactu... -- 2.5.3.2 RNA-based Vaccines -- 2.5.3.2.1 Moderna/NIAID. Moderna is an American company based in Cambridge, Massachusetts, that has developed an mRNA -based vaccine, mRNA -1273. The mRNA vaccine -- 2.5.3.2.2 BioNTech/Fosun/Pfizer.BioNTech, a German company, together with Pfizer, an American company, have developed another mRNA- based ... -- 2.5.3.3 Non-replicating Viral Vector Vaccines -- 2.5.3.3.1 AstraZeneca/University of Oxford. The University of Oxford has formed a partnership with the -- 2.5.3.4 Inactivated Vaccines. , 2.5.3.4.1 Wuhan Institute of Biological Products/Beijing Institute of Biological Products.The above institutions and the pharmaceutical co... -- 2.5.3.4.2 Indian Vaccine Development.There are several institutions including academic/research and vaccine manufacturing companies in Ind... -- 2.5.3.5 Challenges in COVID-19 Vaccine Development -- 2.6 Executive Summary -- References -- Chapter 3 - Understanding the Emergence of SARS-CoV- 2 Viral Variants From a Genomic Perspective -- 3.1 Introduction -- 3.2 A History of Pandemics -- 3.3 Origin and Classification of SARS-CoV-2 -- 3.4 Genomic Architecture of SARS-CoV- 2 -- 3.4.1 Overview -- 3.4.2 Structural Proteins -- 3.4.3 Non-structural Proteins -- 3.5 The Emergence of SARS-CoV- 2 Variants -- 3.6 Antigenic Variations and Immune Escape Mutations -- 3.7 Leading Vaccines Across the Globe -- 3.8 Conclusion -- References -- Chapter 4 - Susceptibility and Spread of SARS-CoV- 2 in Animals -- 4.1 Introduction -- 4.2 Wild Animals -- 4.3 Laboratory Animals -- 4.4 Companion Animals -- 4.5 Farmed Animals -- 4.6 Conclusions -- References -- Chapter 5 - Profiling Some Plant-based Immunomodulatory Bioactive Compounds for COVID-19 Prophylaxis and Treatment Based on Indian Traditional Medicine -- 5.1 Introduction -- 5.2 Prevention of SARS-CoV- 19 Infection: Stage 1 -- 5.3 Incubation to Non-severe Symptomatic Phase - Stage 2 -- 5.4 Severe Respiratory Symptomatic Phase with Hyperinflammation - Stage 3 -- 5.5 Multi-organ Response to COVID-19 Infection - Stage 4 -- 5.6 Summary and Outlook -- 5.7 Executive Summary -- List of Abbreviations -- Authors' Contributions -- Declaration of Competing Interest -- Acknowledgements -- References -- Chapter 6 - The Potential Therapeutic Effects of Natural Products, Herbs, and Mushrooms Against COVID-19 -- 6.1 Origins and Pathogenesis of COVID-19. , 6.2 The Immune Profile in COVID-19Infection -- 6.3 Natural Marine Compounds as Potent Inhibitors Against SARS-CoV- 2 -- 6.4 Potential Use of Mushrooms and Herbs Against COVID-19 Infection -- 6.5 Conclusion -- References -- Chapter 7 - Application of Chinese Herbal Medicine in COVID-19 -- 7.1 Introduction -- 7.2 Representative Prescriptions -- 7.2.1 Qingfei Paidu Decoction (QFPDD, 清 排毒汤) -- 7.2.2 Huashi Baidu Formula (HSBDF, 化湿 毒方) -- 7.2.3 XuanFei Baidu Formula (XFBDF, 宣 毒方) -- 7.3 Finished Patent Medicines -- 7.3.1 Lianhua Qingwen Capsules (LH-­C, 清瘟 囊) -- 7.3.2 Jinhua Qingan Granules (JH-­G, 清感 粒) -- 7.3.3 Xuebijing Injection (XBJ, 必净注射液) -- 7.4 Other Chinese Herbs -- 7.4.1 Ephedra Herba (Ma Huang, ) -- 7.4.2 Honeysuckle (Jin Yin Hua, ) -- 7.4.3 Scutellariae (Huang Qin, ) -- 7.4.4 Glycyrrhizae Radix (Gan Cao, 甘 ) -- 7.4.5 Armeniacae Semen (Ku Xing Ren, 杏仁) -- 7.4.6 Sophorae flavescentis Radix (Ku Shen, 参) -- 7.4.7 Curcuma longa (Jiang Huang, 姜 ) -- 7.5 Conclusion -- List of Abbreviations -- References -- Chapter 8 - COVID-19 Interventional and Therapeutic Clinical Trials: Small Molecules, Interactions, Outcomes and Opportunities -- 8.1 Introduction -- 8.2 Removal-of- treatment Preventative Clinical Trials -- 8.2.1 Trial Aims -- 8.2.2 Trial Populations -- 8.2.3 Potential Therapeutics -- 8.2.4 Trial Designs -- 8.2.5 Primary Outcomes -- 8.2.6 Secondary Outcomes -- 8.2.7 Toxicities -- 8.2.8 Opportunities -- 8.3 Addition-of- treatment Preventative and/or Curative Trials -- 8.3.1 Trial Aims -- 8.3.2 Trial Populations -- 8.3.3 Potential Therapeutics -- 8.3.4 Trial Designs -- 8.3.5 Primary Outcomes -- 8.3.6 Secondary Outcomes -- 8.3.7 Toxicity -- 8.3.7.1 Population-specific Toxicity -- 8.3.7.2 Interactions -- 8.3.8 Opportunities -- 8.4 Supportive Clinical Trials -- 8.4.1 Trial Aims -- 8.4.2 Trial Populations -- 8.4.3 Potential Therapeutics. , 8.4.4 Trial Designs.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Vaccines. ; Electronic books.
    Description / Table of Contents: By addressing considerations of efficacy and safety of drugs and chemicals used to combat COVID-19, virtually in real-time, this book documents and highlights the advances in science and place the toxicology, pharmaceutical science, public health and medical community in a better position to advise in future epidemics.
    Type of Medium: Online Resource
    Pages: 1 online resource (594 pages)
    Edition: 1st ed.
    ISBN: 9781839163654
    DDC: 016.35960973
    Language: English
    Note: Cover -- The Coronavirus Pandemic and the Future Volume 1: Virology, Epidemiology, Translational Toxicology and Therapeutics -- Dedication -- Foreword -- Preface -- Contents -- Contents -- Chapter 1 - What We Know About the Life- threatening Novel Human Coronavirus -- 1.1 Introduction -- 1.2 The Chronology of the Outbreak -- 1.3 Initial Transmission -- 1.3.1 Worldwide Spread of the Virus -- 1.4 SARS-CoV- 2 and Its Etiology -- 1.5 Classification and Grouping -- 1.5.1 Alpha- CoVs -- 1.5.2 Beta- CoVs -- 1.5.3 Gamma- CoVs -- 1.5.4 Delta- CoVs -- 1.6 Epidemiological History of Human Coronaviruses -- 1.6.1 Severe Acute Respiratory Syndrome -- 1.6.2 Middle East Respiratory Syndrome -- 1.6.3 Detailed Documentation of SARS- CoV- 2 and COVID- 19 -- 1.7 Introductory Virology and Pathophysiology of SARS- CoV- 2 -- 1.7.1 Viral Genome -- 1.7.2 Interaction of the Spike and Receptor for Entry -- 1.7.3 Genomic Differences -- 1.7.4 Pathophysiology -- 1.8 Executive Summary and Conclusions -- List of Abbreviations -- Acknowledgements -- References -- Chapter 2 - Severe Acute Respiratory Syndrome Coronavirus- 2 (SARS-CoV- 2): Structure, Lifecycle, and Replication Machinery -- 2.1 Introduction -- 2.2 Classification of Coronaviruses -- 2.3 Genomic Structure of SARS- CoV-Ł2 -- 2.4 Life Cycle of SARS- CoV- 2 -- 2.4.1 Attachment and Entry -- 2.4.2 Replicase Protein Expression -- 2.4.3 Replication and Transcription -- 2.4.4 Assembly and Release -- 2.5 SARS- CoV- 2 RNA Replication Machinery -- References -- Chapter 3 - Accumulated Epidemiological Lessons and China's COVID- 19 Response -- 3.1 Introduction -- 3.2 Accumulated Lessons from China's Response to SARS in 2003 -- 3.3 Epidemiologicial Perspective on China's COVID- 19 Response -- 3.4 China's Control and Prevention Measures in COVID- 19 -- 3.4.1 Mask- wearing and its Comforting Effect. , 3.4.2 Epidemiological Source- tracking and Slow- down of Community Transmission -- 3.5 Comparing China's Response Against SARS and COVID- 19 -- 3.6 Concluding Remarks -- 3.7 Executive Summary -- References -- Chapter 4 - Clinical Presentation, Pathophysiology and Histopathology -- 4.1 Introduction -- 4.1 Introduction -- 4.2 The Distinct Clinical Trajectory and Disease Spectrum of COVID- 19 -- 4.3 A Novel Application of Smartphone Technology -- 4.4 COVID- 19 and Comorbidities in Severe Cases -- 4.5 ARDS and its Sequelae in COVID- 19 -- 4.5.1 ARDS in COVID- 19 -- 4.5.2 Sepsis -- 4.5.3 Septic Shock -- 4.6 Pathophysiology -- 4.6.1 Mechanism of SARS-Cov- 2 Invasion into Host Cells -- 4.7 Histopathology and Disease Manifestations: Introduction -- 4.7.1 Histopathology -- 4.7.2 Pulmonary Manifestations -- 4.7.3 Cardiovascular Manifestations -- 4.7.4 Gastrointestinal Manifestations -- 4.7.5 Renal Manifestations -- 4.7.6 Neurological Manifestations -- 4.7.7 Musculocutaneous Manifestations -- 4.7.8 Hematological Manifestations -- 4.8 Executive Summary -- Acknowledgements -- References -- Chapter 5 - Evaluation of the Disease, Sample Collection and Diagnostics -- 5.1 Introduction -- 5.1.1 Symptoms of COVID- 19 -- 5.1.2 Detection of Disease Based on Symptoms -- 5.1.3 Evaluation Criteria for COVID- 19 Based on ICMR and WHO Guidelines -- 5.2 Sample Collection -- 5.2.1 Overview of Sample Collection Guidelines from the WHO -- 5.2.1.1 Nasopharyngeal or Oropharyngeal Swabs -- 5.2.1.2 Nasal Mid- turbinate Swab -- 5.2.1.3 Anterior Nares Specimen -- 5.2.1.4 Nasopharyngeal Wash/Aspirate or Nasal Wash/Aspirate -- 5.2.1.5 Bronchoalveolar Lavage, Tracheal Aspirate, Pleural Fluid, Lung Biopsy -- 5.2.1.6 Sputum (Phlegm) -- 5.2.1.7 Saliva -- 5.2.1.8 Other -- 5.3 Recent Diagnostics -- 5.3.1 Molecular Diagnostics -- 5.3.2 Laboratory Examinations (Modified from Cascella et al.17). , 5.3.3 Imaging -- 5.3.3.1 Chest X- ray -- 5.3.3.2 Chest CT -- 5.3.3.3 Lung Ultrasound -- 5.3.3.4 Scanning Techniques -- 5.3.4 Blood Parameter Levels (Laboratory Diagnostics) -- 5.3.5 Genetic Susceptibility to COVID- 19 -- 5.3.6 Importance of Real-time RT-PCR in the Detection of COVID- 19 -- 5.3.6.1 Viral Nucleic Acid Detection -- 5.3.7 Serological Assays -- 5.3.8 Enzyme- linked Immunosorbent Assay -- 5.3.9 Magnetic Chemiluminescence Enzyme Immunoassay -- 5.3.10 Colloidal Gold Immunochromatographic Assay -- 5.3.11 Lateral Flow Immunoassay -- 5.3.12 Rapid Antigen Test -- 5.3.13 Neutralization Antibody Assay -- 5.3.14 Other Useful Diagnostics for COVID- 19 -- 5.3.15 False Negatives and Positives -- 5.4 Advantages and Disadvantages of Different Diagnostic Approaches -- 5.4.1 Detection Based on Patient History -- 5.4.2 Detection of Disease Based on Symptoms -- 5.4.3 Scanning Techniques -- 5.4.3.1 CT Scan -- 5.4.3.2 Chest X- ray -- 5.4.3.3 18F- FDG PET/CT -- 5.4.4 Laboratory Serum Diagnostics (e.g. WBC, Inflammatory Markers) -- 5.4.5 Molecular Diagnosis -- 5.4.5.1 RT- PCR -- 5.4.5.2 RT- LAMP -- 5.4.5.3 Transcription- mediated Amplification -- 5.4.6 CRISPR- based Diagnosis -- 5.4.7 Serological Assays -- 5.4.7.1 ELISA -- 5.4.7.2 GICA -- 5.4.7.3 MCLIA -- 5.4.7.4 Lateral Flow Immunoassay -- 5.4.7.5 Neutralization Bioassay -- 5.4.7.6 Rapid Antigen Test -- 5.5 Executive Summary -- Acknowledgements -- References -- Chapter 6 - Therapeutic Options Initially Available for COVID- 19 Patients and Initial Clinical Trials -- 6.1 Introduction to Therapeutic Options Initially Available for COVID- 19 Patients -- 6.1.1 General Guidelines for the Treatments Provided to COVID- 19 Patients -- 6.1.2 Common Treatment Regimens Provided to COVID- 19 Patients -- 6.1.3 Medicinal Plants as Therapy for COVID- 19 -- 6.1.4 Convalescent Plasma Therapy. , 6.1.5 Mesenchymal Stem Cell-Derived Exosomes as Therapy for COVID- 19 -- 6.1.6 Other Treatment Options -- 6.1.6.1 Corticosteroids -- 6.2 Introduction to Ongoing Clinical Trials -- 6.2.1 Ongoing Trials on Various Antiviral Agents -- 6.2.2 Immunosuppressants/Immunomodulators -- 6.2.3 Current Trials on MSCs for COVID- 19 -- 6.3 Executive Summary -- Acknowledgements -- References -- Chapter 7 - Clinical Epidemiology of Coronavirus Disease 2019: Infectivity, Clinical Spectrum and Presentation, and Population Distribution -- 7.1 Introduction -- 7.2 Infection and Tests -- 7.2.1 Viral Tests -- 7.2.2 Population- based Infection Rate -- 7.2.3 Antibody Tests -- 7.3 Clinical Spectrum of COVID- 19 -- 7.3.1 Classification by Clinical Type -- 7.3.2 Asymptomatic Cases -- 7.3.3 Severe Cases and Comorbidity -- 7.3.4 Clinical and Immunological Response -- 7.4 Regional Variation in Clinical Presentation -- 7.4.1 Clinical Manifestation -- 7.4.2 Chemosensory Dysfunction -- 7.4.3 Common Symptoms -- 7.4.3.1 Asia -- 7.4.3.2 USA -- 7.4.3.3 Europe -- 7.5 Population Distribution -- 7.5.1 Pregnancy and Pregnant Women -- 7.5.2 Infants and Pediatric Patients -- 7.5.3 Asymptomatic Cases and Clinical Severity in Children -- 7.5.4 Older Adults -- 7.5.5 Sex Differences -- 7.5.6 Occupation -- 7.6 Case- fatality Rate -- 7.7 Executive Summary and Conclusions -- References -- Chapter 8 - SARS-CoV-2 Genomics and Host Cellular Susceptibility Factors of COVID- 19 -- 8.1 Introduction -- 8.2 Coronavirus and Human Diseases -- 8.2.1 Classification of Coronaviruses -- 8.2.2 Human Coronaviruses and Diseases -- 8.2.3 The Natural Origin of HCoVs -- 8.3 Genomic Structure and Genetics -- 8.3.1 Viral Genomic Structure -- 8.3.2 The Replicase Locus and Proteins -- 8.3.2.1 Nonstructural Proteins -- 8.3.2.2 Structural Proteins -- 8.3.2.3 Accessory Proteins -- 8.3.3 Genomic Mutations. , 8.4 Viral Replication -- 8.4.1 Attachment and Cell Entry -- 8.4.2 Translation and RNA Replication -- 8.4.3 Assembly and Release of Virion -- 8.5 Host Cellular Factors -- 8.5.1 ACE2 -- 8.5.2 TMPRSS2 -- 8.5.3 Furin -- 8.5.4 DPP4 -- 8.5.5 CD147 -- 8.5.6 GRP78 -- 8.5.7 Cathepsins -- 8.5.8 Ly6E -- 8.5.9 L- SIGN and DC- SIGN -- 8.5.10 Sialic Acid -- 8.5.11 Plasmin and Other Proteases -- 8.6Executive Summary -- References -- Chapter 9 - Infection and Pathogenesis of SARS-CoV- 2: an Immunological Perspective -- 9.1 Introduction -- 9.2 SARS-CoV- 2 Virology -- 9.2.1 Structure -- 9.2.2 Genome -- 9.2.3 Proteome -- 9.2.4 Mutation -- 9.2.5 Transmission -- 9.3 Pathogenesis -- 9.3.1 Attachment to the Host Cell -- 9.3.2 Penetration of SARS-CoV- 2 Inside the Host Cell -- 9.3.3 Assembly of the RTC -- 9.3.4 Genome Replication, Transcription, and Translation -- 9.3.5 Virion Assembly and Release -- 9.3.6 Incubation Period -- 9.4 Disease Progression -- 9.5 Immunology -- 9.5.1 Innate Immune Response -- 9.5.1.1 Evasion of Innate Sensing by SARS-CoV- 2 -- 9.5.1.1.1 Evasion of PRR Sensing.Coronavirus- mediated antagonism starts with the evasion of PRR recognition. The ssRNA of coronaviruses c... -- Inhibition of Signalling Cascades. As described, TLR and RLR activation induces signalling cascades, which leads to the release ... -- Inhibition of IFN-1396983920I. Based on previous studies, various mechanisms have been adopted by coronaviruses to inhibit IFN-1... -- 9.5.1.2 Imbalanced Antiviral Defense and Pro- inflammatory Cytokine Production -- 9.5.1.3 Macrophages -- Macrophage Responses to SARS-CoV- 2 Infection.Macrophages and monocytes accumulate and trigger cytokine secretion, leading to c... -- 9.5.1.4 Alveolar type II ATII Cells in the Innate Immune Response -- 9.5.1.5 Neutrophils -- 9.5.1.6 Dendritic Cells -- 9.5.1.7 Natural Killer Cells. , 9.5.1.7.1 Modification of NK Cells Upon SARS-CoV- 2 Infection.Studies on peripheral blood samples of COVID- 19 patients have shown that i.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...