GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Thermophoresis  (3)
  • free-molecule flow regime  (2)
  • thermal plasmas  (2)
Document type
Keywords
Publisher
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 12 (1992), S. 345-370 
    ISSN: 1572-8986
    Keywords: Thermophoresis ; free-molecule regime ; analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Analytical results of the thermophoretic force on a metallic or nonmetallic spherical particle immersed into a rarefied plasma with a heat flux within the plasma are presented for the extreme case of free-molecule regime and thin plasma sheath. It has been shown that the thermophoresis is predominantly caused by atoms at low plasma temperatures with negligible gas ionization, while it is mainly due to ions and electrons at high plasma temperatures with great degree of ionization. The ion flux incident to a particle is constant on the whole sphere surface, while the electron flux to the metallic sphere is dependent on the θ-position with slightly greater value at the fore stagnation point. Consequently, there is a small difference between the metallic and nonmetallic spheres in their θ-distributions of the floating potential on the surface, which causes the thermophoretic force on a nonmetallic sphere to be appreciably greater than that on a metallic sphere at high plasma temperatures. Expressions for the total thermophoretic force on a metallic sphere and its components due to, respectively, atoms, ions, and electrons have been given in a closed form. Calculated results are also presented on the effects of pressure and of electron/heavy-particle temperature ratio. These results can be understood based on the variation of atom, ion, and electron thermal conductivities with the gas pressure, the temperature, and the temperature ratio.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 9 (1989), S. 387-408 
    ISSN: 1572-8986
    Keywords: Particle drag force ; free-molecule flow regime ; pressure effect ; two-temperature plasma ; analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Drag force on a metallic or nonmetallic spherical particle exposed to a plasma flow is studied for the extreme case of a free-molecule regime. Analytical expressions are derived for the drag components due to, respectively, atoms, ions, and electrons and for the total drag on the whole sphere due to all the gas species. It has been shown that the drag is proportional to the square of the particle radius or the drag coefficient is independent of the particle radius. At low gas temperatures with a negligible degree of ionization, the drag is caused mainly by atoms and could be predicted by using the well-known drag expression given in ordinary-temperature rarefied gas dynamics. On the other hand, the drag is caused mainly by ions at high plasma temperatures with a great degree of ionization. The contribution of electrons to the total drag is always negligible. Ignoring gas ionization at high plasma temperatures would overestimate the particle drag. There is a little difference between metallic and nonmetallic spheres in their total drag forces, with a slightly higher value for a metallic sphere at high plasma temperatures, but usually such a small difference could be neglected in engineering calculations. The drag increases rapidly with increasing gas pressure or oncoming speed ratio. For a two-temperature plasma, the drag increases at low electron temperatures but decreases at high electron temperatures with the increase in the electron/heavy-particle temperature ratio.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 14 (1994), S. 163-192 
    ISSN: 1572-8986
    Keywords: Thermophoresis ; evaporating particle ; free-molecule regime ; analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Analytical results of the thermophoretic force on an evaporating spherical particle immersed in a rarefied plasma with a large temperature gradient are presented for the extreme case of free-molecule regime and thin plasma sheath. It has been shown that the existence of a temperature gradient in the plasma causes a nonuniform distribution of the local heat flux density on the sphere surface with its maximum value at the fore-stagnation point of the sphere, although the total heal flux to the whole particle is independent of the temperature gradient existing in the plasma. This nonuniform-distribution of the local heat flux density causes a nonuniform distribution of the. local evaporated-mass flux and related reaction force around the surface of an evaporating particle, and thus causes an additional force on the particle. Calculated results show that the thermophoretic force on an evaporating particle may substantially exceed that on a nonevaporating one, especially for the case of a metallic particle (with infinite electric conductivity). The effect of evaporation on the thermophoretic force is more pronounced as the evaporation latent heat of the particle material is comparatively low and as high plasma temperatures are involved.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 3 (1983), S. 97-113 
    ISSN: 1572-8986
    Keywords: Knudsen effect ; heat transfer ; small particles ; thermal plasmas ; analytical studies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract The Knudsen effect on heat transfer to a particle exposed to a thermal plasma is important for many practical situations experienced in plasma chemistry and plasma processing. This paper provides theoretical results of this effect based on the “heat conduction potential jump” approach. It is shown that a correction factor which depends on the Knudsen number must be introduced into the expressions for heat fluxes obtained previously based on the continuum approach. The Knudsen effect is stronger for smaller particles and it is also more pronounced for an Ar-H2 plasma (compared to Ar and nitrogen plasmas at the same temperature). Since the Knudsen effect depends on the surface temperature of a particle, calculation of particle heating becomes more complicated.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 19 (1999), S. 33-51 
    ISSN: 1572-8986
    Keywords: Thermophoresis ; nonevaporating or evaporating particle ; free-molecule regime ; combined specular and diffuse reflection ; sphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Additional kinetic-theory analytical results are presented concerning the thermophoretic force acting on a spherical nonmetallic or metallic, nonevaporating or evaporating particle suspended in a plasma for the extreme case of free-molecule regime and thin plasma sheath. A combined specular and diffuse reflection of the atoms incident on or formed in the ion–electron recombination process at the particle surface has been taken into account in this analysis as an extension of the previous paper (Xi Chen, J. Phys. D: Appl. Phys. 30, 826–841, 1997). It has been shown that the specular reflection fraction of gas particles at the surface does not affect the thermophoretic force acting on a nonevaporating, metallic or nonmetallic, spherical particle, but they affect significantly the evaporation-added thermophoretic force. The evaporation-added thermophoretic force decreases linearly with the increase of the specular reflection fraction, and the decreasing rate for a nonmetallic evaporating particle is much greater than that for a metallic one at high plasma temperatures.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 2 (1982), S. 185-212 
    ISSN: 1572-8986
    Keywords: Heat and mass transfer ; small particles ; thermal plasmas ; exact and approximate solutions ; analytical studies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract This paper is concerned with an analytical study of the heat and mass transfer process of a single particle exposed to a thermal plasma, with emphasis on the effects which evaporation imposes on heat transfer from the plasma to the particle. The results refer mainly to an atmospheric-pressure argon plasma and, for comparison purposes, an argon-hydrogen mixture and a nitrogen plasma are also considered in a temperature range from 3000 to 16,000 K. Interactions with water droplets, alumina, tungsten, and graphite particles are considered in a range of small Reynolds numbers typical for plasma processing of fine powders. Comparisons between exact solutions of the governing equations and approximate solutions indicate the parameter range for which approximate solutions are valid. The time required for complete evaporation of a given particle can be determined from calculated values of the vaporization constant. This constant is mainly determined by the boiling (or sublimation) temperature of the particles and the density of the condensed phase. Evaporation severely reduces heat transfer to a particle and, in general, this effect is more pronounced for materials with low latent heat of evaporation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 6 (1986), S. 313-333 
    ISSN: 1572-8986
    Keywords: Heat transfer to metallic and nonmetallic particles ; free-molecule flow regime ; two-temperature plasma ; reduced pressure ; analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Heat transfer from a plasma flow to a metallic or nonmetallic spherical particle is studied in this paper for the extreme case of free-molecule flow regime. Analytical expressions are derived for the heat flux due to, respectively, atoms, ions, and electrons and for the floating potential on the sphere exposed to a two-temperature plasma flow. It has been shown that the local or average heat flux density over the whole sphere is independent of the sphere radius and approximately in direct proportion to the gas pressure. The presence of a macroscopic relative velocity between the plasma and the sphere causes substantially nonuniform distributions of the local heat flux and enhances the total heat flux to the sphere. The heat flux is also enhanced by the gas ionization. Appreciable difference between metallic and nonmetallic spheres is found in the distributions along the oncoming flow direction of the floating potential and of the local heat flux densities due to ions and electrons. The total heat flux to the whole sphere is, however, almost the same for these different spheres. For a fixed value of the electron temperature, the heat flux decreases with increasing temperature ratio Te/Th.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...