GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0935-6304
    Keywords: Isotope ratio monitoring-Gas Chromatography-Mass Spectrometry (irm-GC-MS) ; Compound specific isotope analysis (CSIA) ; Pyrolysis ; Stable carbon isotopes ; Kerogen ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: This study describes the application of isotope ratio monitoring gas chromatography- mass spectrometry (irm-GC-MS) for compound-specific stable carbon isotopic analysis of aliphatic hydrocarbon and phenolic products from flash pyrolysis (800 °C, 20s) of natural biopolymers and sedimentary kerogens. As part of this work, we provide a detailed description of the analysis of complex samples, including approaches for peak integration, data handling and correction for derivative carbons. Several aliphatic and aromatic biopolymers are analyzed by irm-GC-MS in order to establish relationships between the isotopic signatures of pyrolysis products and those of their parent macromolecules. We also analyze a select group of kerogens and kerogen precursors of different ages and biopolymer compositions to evaluate the applicability of combined pyrolysis/irm-GC-MS to complex geochemical mixtures. Our findings suggest that, in spite of the wide degree of heterogeneity, the isotopic values of individual aliphatic and phenolic pyrolysis products determined by irm-GC-MS can be related to the isotopic composition of the total organic carbon in kerogens and used to trace its biological sources. This study also highlights the need for optimum chromatographic separation in order to fully realize the potential of compound specific isotope analyses.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q10004, doi:10.1029/2004GC000772.
    Description: Long-chain, odd-carbon-numbered C25 to C35 n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (〈C25) are removed by evaporation on the moving wire. Test samples processed using this procedure yielded n-alkane fractions essentially free of interfering components. The δ13C values obtained by MW-irMS did not differ significantly from weighted averages of individual n-alkane δ13C values obtained by irmGC-MS. Isotopic variations in compound-class n-alkane fractions from a latitudinal transect of core-top sediments from the Southwest African margin (3°N–28°S) were congruent with those measured by compound-specific isotopic analyses of plant-wax n-alkanes. The amplitude of the variations was smaller, indicating contributions from non-plant-wax hydrocarbons, but the measurements revealed variations in carbon isotopic composition that are consistent with vegetation zones on the adjacent continent.
    Description: We thank the WHOI Summer Student Fellow program and NSF (BCS-0218511) for funding.
    Keywords: Moving wire ; Plant-wax n-alkanes ; Stable carbon isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 722636 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...