GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Spectrum analysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (1172 pages)
    Edition: 1st ed.
    ISBN: 9783527605026
    DDC: 543/.5
    Language: English
    Note: Intro -- Handbook of Spectroscopy -- Contents -- Preface -- List of Contributors -- Volume 1 -- Section I Sample Preparation and Sample Pretreatment -- Introduction -- 1 Collection and Preparation of Gaseous Samples -- 1.1 Introduction -- 1.2 Sampling considerations -- 1.3 Active vs. Passive Sampling -- 1.3.1 Active Air Collection Methods -- 1.3.1.1 Sorbents -- 1.3.1.2 Bags -- 1.3.1.3 Canisters -- 1.3.1.4 Bubblers -- 1.3.1.5 Mist Chambers -- 1.3.1.6 Cryogenic Trapping -- 1.3.2 Passive Sampling -- 1.4 Extraction and Preparation of Samples -- 1.5 Summary -- 2 Sample Collection and Preparation of Liquid and Solids -- 2.1 Introduction -- 2.2 Collection of a Representative Sample -- 2.2.1 Statistics of Sampling -- 2.2.2 How Many Samples Should be Obtained? -- 2.2.3 Sampling -- 2.2.3.1 Liquids -- 2.2.3.2 Solids -- 2.3 Preparation of Samples for Analysis -- 2.3.1 Solid Samples -- 2.3.1.1 Sample Preparation for Inorganic Analysis -- 2.3.1.2 Decomposition of Organics -- 2.3.2 Liquid Samples -- 2.3.2.1 Extraction/Separation and Preconcentration -- 2.3.2.2 Chromatographic Separation -- Section II Methods 1: Optical Spectroscopy -- 3 Basics of Optical Spectroscopy -- 3.1 Absorption of Light -- 3.2 Infrared Spectroscopy -- 3.3 Raman Spectroscopy -- 3.4 UV/VIS Absorption and Luminescence -- 4 Instrumentation -- 4.1 MIR Spectrometers -- 4.1.1 Dispersive Spectrometers -- 4.1.2 Fourier-Transform Spectrometers -- 4.1.2.1 Detectors -- 4.1.2.2 Step-scan Operation -- 4.1.2.3 Combined Techniques -- 4.2 NIR Spectrometers -- 4.2.1 FT-NIR Spectrometers -- 4.2.2 Scanning-Grating Spectrometers -- 4.2.3 Diode Array Spectrometers -- 4.2.4 Filter Spectrometers -- 4.2.5 LED Spectrometers -- 4.2.6 AOTF Spectrometers -- 4.3 Raman Spectrometers -- 4.3.1 Raman Grating Spectrometer with Single Channel Detector -- 4.3.1.1 Detectors -- 4.3.1.2 Calibration. , 4.3.2 FT-Raman Spectrometers with Near-Infrared Excitation -- 4.3.3 Raman Grating Polychromator with Multichannel Detector -- 4.4 UV/VIS Spectrometers -- 4.4.1 Sources -- 4.4.2 Monochromators -- 4.4.3 Detectors -- 4.5 Fluorescence Spectrometers -- 5 Measurement Techniques -- 5.1 Transmission Measurements -- 5.2 Reflection Measurements -- 5.2.1 External Reflection -- 5.2.2 Reflection Absorption -- 5.2.3 Attenuated Total Reflection (ATR) -- 5.2.4 Reflection at Thin Films -- 5.2.5 Diffuse Reflection -- 5.3 Spectroscopy with Polarized Light -- 5.3.1 Optical Rotatory Dispersion -- 5.3.2 Circular Dichroism (CD) -- 5.4 Photoacoustic Measurements -- 5.5 Microscopic Measurements -- 5.5.1 Infrared Microscopes -- 5.5.2 Confocal Microscopes -- 5.5.3 Near-field Microscopes -- 6 Applications -- 6.1 Mid-Infrared (MIR) Spectroscopy -- 6.1.1 Sample Preparation and Measurement -- 6.1.1.1 Gases -- 6.1.1.2 Solutions and Neat Liquids -- 6.1.1.3 Pellets and Mulls -- 6.1.1.4 Neat Solid Samples -- 6.1.1.5 Reflection-Absorption Sampling Technique -- 6.1.1.6 Sampling with the ATR Technique -- 6.1.1.7 Thin Samples -- 6.1.1.8 Diffuse Reflection Sampling Technique -- 6.1.1.9 Sampling by Photoacoustic Detection -- 6.1.1.10 Microsampling -- 6.1.2 Structural Analysis -- 6.1.2.1 The Region from 4000 to 1400 cm(-1) -- 6.1.2.2 The Region 1400-900 cm(-1) -- 6.1.2.3 The Region from 900 to 400 cm(-1) -- 6.1.3 Special Applications -- 6.2 Near-Infrared Spectroscopy -- 6.2.1 Sample Preparation and Measurement -- 6.2.2 Applications of NIR Spectroscopy -- 6.3 Raman Spectroscopy -- 6.3.1 Sample Preparation and Measurements -- 6.3.1.1 Sample Illumination and Light Collection -- 6.3.1.2 Polarization Measurements -- 6.3.1.3 Enhanced Raman Scattering -- 6.3.2 Special Applications -- 6.4 UV/VIS Spectroscopy -- 6.4.1 Sample Preparation -- 6.4.2 Structural Analysis -- 6.4.3 Special Applications. , 6.5 Fluorescence Spectroscopy -- 6.5.1 Sample Preparation and Measurements -- 6.5.1.1 Fluorescence Quantum Yield and Lifetime -- 6.5.1.2 Fluorescence Quencher -- 6.5.1.3 Solvent Relaxation -- 6.5.1.4 Polarized Fluorescence -- 6.5.2 Special Applications -- Section III Methods 2: Nuclear Magnetic Resonance Spectroscopy -- Introduction -- 7 An Introduction to Solution, Solid-State, and Imaging NMR Spectroscopy -- 7.1 Introduction -- 7.2 Solution-state (1)H NMR -- 7.3 Solid-state NMR -- 7.3.1 Dipolar Interaction -- 7.3.2 Chemical Shift Anisotropy -- 7.3.3 Quadrupolar Interaction -- 7.3.4 Magic Angle Spinning (MAS) NMR -- 7.3.5 T(1) and T(1ρ) Relaxation -- 7.3.6 Dynamics -- 7.4 Imaging -- 7.5 3D NMR: The HNCA Pulse Sequence -- 7.6 Conclusion -- 8 Solution NMR Spectroscopy -- 8.1 Introduction -- 8.2 1D (One-dimensional) NMR Methods -- 8.2.1 Proton Spin Decoupling Experiments -- 8.2.2 Proton Decoupled Difference Spectroscopy -- 8.2.3 Nuclear Overhauser Effect (NOE) Difference Spectroscopy -- 8.2.4 Selective Population Transfer (SPT) -- 8.2.5 J-Modulated Spin Echo Experiments -- 8.2.5.1 INEPT (Insensitive Nucleus Enhancement by Polarization Transfer) -- 8.2.5.2 DEPT (Distortionless Enhancement Polarization Transfer) -- 8.2.6 Off-Resonance Decoupling -- 8.2.7 Relaxation Measurements -- 8.3 Two-dimensional NMR Experiments -- 8.3.1 2D J-Resolved NMR Experiments -- 8.3.2 Homonuclear 2D NMR Spectroscopy -- 8.3.2.1 COSY, Homonuclear Correlated Spectroscopy -- 8.3.2.2 Homonuclear TOCSY, Total Correlated Spectroscopy -- 8.3.2.3 NOESY, Nuclear Overhauser Enhancement Spectroscopy -- 8.3.2.4 ROESY, Rotating Frame Overhauser Enhanced Spectroscopy -- 8.3.2.5 NOESY vs. ROESY -- 8.3.2.6 Other Homonuclear Autocorrelation Experiments -- 8.3.3 Gradient Homonuclear 2D NMR Experiments -- 8.3.4 Heteronuclear Shift Correlation. , 8.3.5 Direct Heteronuclear Chemical Shift Correlation Methods -- 8.3.5.1 HMQC, Heteronuclear Multiple Quantum Coherence -- 8.3.6 HSQC, Heteronuclear Single Quantum Coherence Chemical Shift Correlation Techniques -- 8.3.6.1 Multiplicity-edited Heteronuclear Shift Correlation Experiments -- 8.3.6.2 Accordion-optimized Direct Heteronuclear Shift Correlation Experiments -- 8.3.7 Long-range Heteronuclear Chemical Shift Correlation -- 8.3.7.1 HMBC, Heteronuclear Multiple Bond Correlation -- 8.3.7.2 Variants of the Basic HMBC Experiment -- 8.3.7.3 Accordion-optimized Long-range Heteronuclear Shift Correlation Methods. -- 8.3.7.4 (2)J(3)J-HMBC -- 8.3.7.5 Relative Sensitivity of Long-range Heteronuclear Shift Correlation Experiments -- 8.3.7.6 Applications of Accordion-optimized Long-range Heteronuclear Shift Correlation Experiments -- 8.3.8 Hyphenated-2D NMR Experiments -- 8.3.9 One-dimensional Analogues of 2D NMR Experiments -- 8.3.10 Gradient 1D NOESY -- 8.3.11 Selective 1D Long-range Heteronuclear Shift Correlation Experiments -- 8.3.12 Small Sample NMR Studies -- 8.4 Conclusions -- 9 Solid-State NMR -- 9.1 Introduction -- 9.2 Solid-state NMR Lineshapes -- 9.2.1 The Orientational Dependence of the NMR Resonance Frequency -- 9.2.2 Single-crystal NMR -- 9.2.3 Powder Spectra -- 9.2.4 One-dimensional (2)H NMR -- 9.3 Magic-angle Spinning -- 9.3.1 CP MAS NMR -- 9.3.2 (1)H Solid-State NMR -- 9.4 Recoupling Methods -- 9.4.1 Heteronuclear Dipolar-coupled Spins: REDOR -- 9.4.2 Homonuclear Dipolar-coupled Spins -- 9.4.3 The CSA: CODEX -- 9.5 Homonuclear Two-dimensional Experiments -- 9.5.1 Establishing the Backbone Connectivity in an Organic Molecule -- 9.5.2 Dipolar-mediated Double-quantum Spectroscopy -- 9.5.3 High-resolution (1)H Solid-state NMR -- 9.5.4 Anisotropic - Isotropic Correlation: The Measurement of CSAs. , 9.5.5 The Investigation of Slow Dynamics: 2D Exchange -- 9.5.6 (1)H-(1)H DQ MAS Spinning-sideband Patterns -- 9.6 Heteronuclear Two-dimensional Experiments -- 9.6.1 Heteronuclear Correlation -- 9.6.2 The Quantitative Determination of Heteronuclear Dipolar Couplings -- 9.6.3 Torsional Angles -- 9.6.4 Oriented Samples -- 9.7 Half-integer Quadrupole Nuclei -- 9.8 Summary -- Section IV Methods 3: Mass Spectrometry -- 10 Mass Spectrometry -- 10.1 Introduction: Principles of Mass Spectrometry -- 10.1.1 Application of Mass Spectrometry to Biopolymer Analysis -- 10.2 Techniques and Instrumentation of Mass Spectrometry -- 10.2.1 Sample Introduction and Ionisation Methods -- 10.2.1.1 Pre-conditions -- 10.2.1.2 Gas Phase ("Hard") Ionisation Methods -- 10.2.1.3 "Soft" Ionisation Techniques -- 10.2.2 Mass Spectrometric Analysers -- 10.2.2.1 Magnetic Sector Mass Analysers -- 10.2.2.2 Quadrupole Mass Analysers -- 10.2.2.3 Time-of-Flight Mass Analysers -- 10.2.2.4 Trapped-Ion Mass Analysers -- 10.2.2.5 Hybrid Instruments -- 10.2.3 Ion Detection and Spectra Acquisition -- 10.2.4 High Resolution Fourier Transform Ion Cyclotron Resonance (ICR) Mass Spectrometry -- 10.2.5 Sample Preparation and Handling in Bioanalytical Applications -- 10.2.5.1 Liquid-Liquid Extraction (LLE) -- 10.2.5.2 Solid Phase Extraction (SPE) -- 10.2.5.3 Immunoaffinity Extraction (IAE) -- 10.2.5.4 Solid-phase Microextraction -- 10.2.5.5 Supercritical-Fluid Extraction (SFE) -- 10.2.6 Coupling of Mass Spectrometry with Microseparation Methods -- 10.2.6.1 Liquid Chromatography-Mass Spectrometry Coupling (LC-MS) -- 10.2.6.2 Capillary Electrophoresis (CE)-Mass Spectrometry -- 10.3 Applications of Mass Spectrometry to Biopolymer Analysis -- 10.3.1 Introduction -- 10.3.2 Analysis of Peptide and Protein Primary Structures and Post-Translational Structure Modifications. , 10.3.3 Tertiary Structure Characterisation by Chemical Modification and Mass Spectrometry.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...