GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Calcium channel blockers ; Cytosolic calcium ; Sodium pump ; Muscle fibres
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of 10 mM Ca2+ and Ca2+ channel blockers verapamil, diltiazem and flunarizine on the ouabain-sensitive electrogenic Na+, K+ pump activity of mouse diaphragm muscle fibres enriched with Na+ were compared with the changes in cytosolic [Ca2+]. The electrogenic Na+ pump activity produced by adding K+ to muscles previously bathed for 4 h in a K+-free, 2-mM [Ca2+] solution increased the resting membrane potential by about 18 mV. This hyperpolarization was completely inhibited after 10 min incubation in 10 mM Ca2+. Verapamil 10−5M, 10−5M diltiazem and 10−7 M flunarizine effectively prevented the effect of elevated [Ca2+]. At these concentrations, these drugs did not affect the K+-induced hyperpolarization. In mouse diaphragm, the basal cytosolic [Ca2+] measured by the fluorescent indicator 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]2-(2′-amino 5′-methylphenoxy) ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (fura-2/AM) was 261±6 nM. After 4 h in a Liley K+-free, 2 mM [Ca2+] solution, the cytosolic [Ca2+] increased to 314±28 nM. Increase in [Ca2+] from 2 to 10 mM caused a twofold increase of cytosolic [Ca2+] to 637±26 nM. This rise was, like the Ca2+-induced inhibition of electrogenic pump, prevented by 10−5 M verapamil, 10−5M diltiazem and 10−7 M flunarizine. The results suggest that substances which block Ca2+ entry into the cell prevent the Ca2+ induced inhibition of the Na+ pump.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...