GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 118 (2015): 53-72, doi:10.1016/j.dsr2.2015.06.006.
    Description: The flow of nutrient-rich winter water (WW) through the Chukchi Sea plays an important and previously uncharacterized role in sustaining summer phytoplankton blooms. Using hydrographic and biogeochemical data collected as part of the ICESCAPE program (June-July 2010-11), we examined phytoplankton bloom dynamics in relation to the distribution and circulation of WW (defined as water with potential temperature ≤ -1.6°C) across the Chukchi shelf. Characterized by high concentrations of nitrate (mean: 12.3 ± 5.13 μmol L-1) that typically limits primary production in this region, WW was correlated with extremely high phytoplankton biomass, with mean chlorophyll a concentrations that were three-fold higher in WW (8.64 ± 9.75 μg L-1) than in adjacent warmer water (2.79 ± 5.58 μg L-1). Maximum chlorophyll a concentrations (~30 μg L-1) were typically positioned at the interface between nutrient-rich WW and shallower, warmer water with more light availability. Comparing satellite-based calculations of open water duration to phytoplankton biomass, nutrient concentrations, and oxygen saturation revealed widespread evidence of under-ice blooms prior to our sampling, with biogeochemical properties indicating that blooms had already terminated in many places where WW was no longer present. Our results suggest that summer phytoplankton blooms are sustained for a longer duration along the pathways of nutrient-rich WW and that biological hotspots in this region (e.g. the mouth of Barrow Canyon) are largely driven by the flow and confluence of these extremely productive pathways of WW that flow across the Chukchi shelf.
    Description: This material is based upon work supported by the National Aeronautic and Space Administration (NASA) under Grant No. NNX10AF42G and the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0645962 to K.E. Lowry.
    Keywords: Phytoplankton ; Winter water ; Under-ice blooms ; Biological hotspots ; Chukchi Sea
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 8088–8097, doi:10.1002/2015GL065727.
    Description: The Ross Sea sustains a rich ecosystem and is the most productive sector of the Southern Ocean. Most of this production occurs within a polynya during the November–February period, when the availability of dissolved iron (dFe) is thought to exert the major control on phytoplankton growth. Here we combine new data on the distribution of dFe, high-resolution model simulations of ice melt and regional circulation, and satellite-based estimates of primary production to quantify iron supply and demand over the Ross Sea continental shelf. Our analysis suggests that the largest sources of dFe to the euphotic zone are wintertime mixing and melting sea ice, with a lesser input from intrusions of Circumpolar Deep Water and a small amount from melting glacial ice. Together these sources are in approximate balance with the annual biological dFe demand inferred from satellite-based productivity algorithms, although both the supply and demand estimates have large uncertainties.
    Keywords: Iron ; Ross Sea ; Biogeochemical cycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Antarctic Biological Model Output
    Description: NetCDF output for 8 stations using the circum-Antarctic biological model (CIAO). Two different scenarios were run, one where meltwater from ice shelves were a source of iron (20 nM) and one where meltwater from ice shelves were set to 0. A previous calculated model (see related dataset) was used as input. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/858663
    Description: NSF Office of Polar Programs (formerly NSF PLR) (NSF OPP) OPP-1643618
    Keywords: Southern Ocean ; Ross Sea ; Amundsen Sea ; Pine Island Bay ; Polynyas ; Ice shelves ; Glaciers ; Meltwater ; Iron ; Diatoms ; Phaeocystis antarctic ; Primary production
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124 (2019): 7153– 7177, doi: 10.1029/2019JC015261.
    Description: Data from a late spring survey of the northeast Chukchi Sea are used to investigate various aspects of newly ventilated winter water (NVWW). More than 96% of the water sampled on the shelf was NVWW, the saltiest (densest) of which tended to be in the main flow pathways on the shelf. Nearly all of the hydrographic profiles on the shelf displayed a two‐layer structure, with a surface mixed layer and bottom boundary layer separated by a weak density interface (on the order of 0.02 kg/m3). Using a polynya model to drive a one‐dimensional mixing model, it was demonstrated that, on average, the profiles would become completely homogenized within 14–25 hr when subjected to the March and April heat fluxes. A subset of the profiles would become homogenized when subjected to the May heat fluxes. Since the study domain contained numerous leads within the pack ice—many of them refreezing—and since some of the measured profiles were vertically uniform in density, this suggests that NVWW is formed throughout the Chukchi shelf via convection within small openings in the ice. This is consistent with the result that the salinity signals of the NVWW along the central shelf pathway cannot be explained solely by advection from Bering Strait or via modification within large polynyas. The local convection would be expected to stir nutrients into the water column from the sediments, which explains the high nitrate concentrations observed throughout the shelf. This provides a favorable initial condition for phytoplankton growth on the Chukchi shelf.
    Description: The authors are indebted to Commanding Officer John Reeves, Executive Officer Gregory Stanclik, Operations Officer Jacob Cass, and the entire crew of the USCGC Healy for their hard work and dedication in making the SUBICE cruise a success. We also acknowledge Scott Hiller for his assistance with Healy's meteorological data. We thank an anonymous reviewer for helpful input that improved the paper. Funding for A. P., R. P., C. N., and F. B. was provided by the National Science Foundation (NSF) under grant PLR‐1303617. K. M. was funded by the Natural Sciences and Engineering Research Council of Canada. K. V. acknowledges the Bergen Research Foundation under Grant BFS2016REK01. K. A. was supported by the NSF grant PLR‐1304563. The CTD and shipboard ADCP data are available from https://www.rvdata.us/search/cruise/HLY1401, and the nutrient data can be accessed from https://arcticdata.io/catalog/view/doi:10.18739/A2RG3Z and http://ocean.stanford.edu/subice/. The shipboard meteorological data reside at http://ocean.stanford.edu/subice/.
    Description: 2020-04-14
    Keywords: Brine rejection ; Chukchi Sea ; Convection ; Winter water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12019, doi:10.1029/2010JC006553.
    Description: The Ross Sea polynya is among the most productive regions in the Southern Ocean and may constitute a significant oceanic CO2 sink. Based on results from several field studies, this region has been considered seasonally iron limited, whereby a “winter reserve” of dissolved iron (dFe) is progressively depleted during the growing season to low concentrations (~0.1 nM) that limit phytoplankton growth in the austral summer (December–February). Here we report new iron data for the Ross Sea polynya during austral summer 2005–2006 (27 December–22 January) and the following austral spring 2006 (16 November–3 December). The summer 2005–2006 data show generally low dFe concentrations in polynya surface waters (0.10 ± 0.05 nM in upper 40 m, n = 175), consistent with previous observations. Surprisingly, our spring 2006 data reveal similar low surface dFe concentrations in the polynya (0.06 ± 0.04 nM in upper 40 m, n = 69), in association with relatively high rates of primary production (~170–260 mmol C m−2 d−1). These results indicate that the winter reserve dFe may be consumed relatively early in the growing season, such that polynya surface waters can become “iron limited” as early as November; i.e., the seasonal depletion of dFe is not necessarily gradual. Satellite observations reveal significant biomass accumulation in the polynya during summer 2006–2007, implying significant sources of “new” dFe to surface waters during this period. Possible sources of this new dFe include episodic vertical exchange, lateral advection, aerosol input, and reductive dissolution of particulate iron.
    Description: This research was supported by U.S. National Science Foundation awards OPP-0338164 to PNS, OPP- 0338350 to RBD, OPP-0440840 to MAS, OPP-0338157 to WOS, and OPP-0338097 to GRD.
    Description: 2012-06-15
    Keywords: Ross Sea ; Iron ; Phytoplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...