GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8935
    Keywords: Polypropylene ; Tubular membrane ; Thermally induced phase separation ; Pure water permeability ; Retention
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Polypropylene microporous tubular membranes were prepared by using camphene as solvent and through thermally induced phase separation at various quenching temperatures. Characterization of the resulting membrane included scanning electron microscopy, differential scanning calorimetry, and wide angle X-ray scattering. Microscopic observation showed that the membrane was composed of spherical clusters and had a leafy structure. The crystallinity increased with the quenching temperature. The crystalline structure was of smectic form. Permeation performance was also determined, including pure water permeability and retention of dextran. The results showed that at lower quenching temperatures, the structure of membrane was denser. Therefore, the permeability was lower and the retention was higher.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8935
    Keywords: Polypropylene ; Tubular membrane ; Thermally induced phase separation ; Hydraulic permeability ; Retention ; Sublimation ; Extraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract A novel solvent, camphene, was used to prepare microporous polypropylene tubular membranes via thermally induced phase separation (TIPS). In this process, camphene was removed by either sublimation or extraction. The effect of the solvent-removal on the structure and properties of the resulting membrane was studied. Microscopic observation and wide angle X-ray scattering indicate that the morphology and crystalline structure difference is minor. Thermal analysis and tensile tests reveal that the crystallinity and breaking strength of the tubular membrane from the extracting method are slightly higher than those for the sublimating method. Porosity measurements show that the sublimation method can yield membranes with slightly higher porosity than the extraction method. Furthermore, permeation results indicate that membranes from extraction have a smaller permeation rate and higher retention. Therefore solvent-extraction can produce a denser membrane structure than sublimation can.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...