GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rat colonic mucosa  (3)
  • Somatostatin (SRIF)  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 352 (1995), S. 402-411 
    ISSN: 1432-1912
    Keywords: Key words Electrogenic ion transport ; Rat colonic mucosa ; Somatostatin (SRIF) ; BIM-23027 ; BIM-23056 ; L-362855 ; Seglitide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The aim of this study was to examine the potencies of several recently identified selective somatostatin (SRIF)-receptor ligands as inhibitors of electrogenic ion transport in the rat distal colonic mucosa with the view to identifying the SRIF receptor type involved. Under basal conditions, cumulative administration of SRIF and SRIF28 decreased short circuit current (SCC), a measure of electrogenic ion transport, with EC50 values of 4 nM and 9 nM respectively. The peptidase inhibitors, phosphoramidon (1 μM) and amastatin (10 μM), had no effect on the potencies of either SRIF or SRIF28. The inhibitory action of SRIF on basal SCC was suppressed by piretanide and diphenylamine-2-carboxylate, compatible with the assumption that the Na+K+2Cl- co-transporter and Cl- channels, respectively, may be involved in this antisecretory action of SRIF. Tetrodotoxin (1 μM) had no effect on the antisecretory action of SRIF, suggesting that the process was not neuronally mediated. All of the SRIF analogues examined, with the exception of BIM-23056, maximally inhibited basal SCC to a similar extent as SRIF. Seglitide and octreotide were both more potent antisecretory agents than SRIF (respective EC50 values, 0.4 nM and 1.5 nM) suggesting that this effect was mediated by a receptor belonging to the SRIF1 receptor group. The most distinguishing feature of the rank order of agonist potencies was the high potency of the selective sst2 receptor ligand, BIM-23027 (EC50 value 0.32 nM), the weaker potency exhibited by the selective sst5 receptor ligand, L-362855 (EC50 value 21 nM), and the lack of agonist activity displayed by the selective sst3 receptor ligand, BIM-23056 (EC50 value 〉1000 nM). This profile is comparable with that observed in binding studies on the recombinant sst2 receptor. Forskolin-stimulated secretion was suppressed by SRIF analogues with the rank order of agonist potencies BIM-23027〉SRIF〉L-362855≫BIM-23056 which resembled that exibited under basal conditions. However, the absolute potencies of these agonists were lower (respective EC50 values 2 nM, 14 nM, 38 nM and 〉1000 nM) whilst the magnitude of inhibition was about three fold greater. BIM-23027 and SRIF (both 30 nM) also inhibited carbachol-stimulated increases in basal SCC by 60–70%, while a similar concentration of L-362855 inhibited these responses by 11%. BIM-23056 (1 μM) had no effect on carbachol-simulated secretion. Radioligand binding studies on rat colonic mucosal membranes using [125I]-Tyr11-SRIF suggested heterogeneity of SRIF binding sites. Thus, SRIF and SRIF28 competed for binding (IC50 values, 0.32 and 0.63 nM, respectively) with Hill slopes less than unity; while seglitide and BIM-23027 both maximally displaced only 30–40% of specific binding with apparent high affinity (respective pIC50 values, 10.1 nM and 10.0). In conclusion, SRIF decreases basal as well as both cAMP and Ca2+-dependent Cl- secretion in rat colonic mucosa. The rank order of agonist potencies suggests that receptors resembling the recombinant sst2 receptor mediate inhibition of basal and forskolin-stimulated secretion. Radioligand binding studies suggest that BIM-23027 interacts with a sub-population of [125I]Tyr11-SRIF binding sites in rat colonic mucosal membranes which probably correspond to the receptors mediating the antisecretory effects described here.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 354 (1996), S. 543-549 
    ISSN: 1432-1912
    Keywords: Key words Somatostatin ; BIM-23027 ; Rat colonic mucosa ; sst2 receptors ; SRIF-binding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We have previously shown that the somatostatin (SRIF) sst2 receptor-selective peptide, BIM-23027, is a potent antisecretory agent in rat isolated distal colonic mucosa (RDCM) and in radioligand binding studies in RDCM membranes, it only maximally inhibited approximately 40% of [125I]-Tyr11-SRIF-14 binding (McKeen ES, Feniuk W, Humphrey PPA (1995) Naunyn-Schmiedeberg‘s Arch Pharmacol 352:402–411). The aim of this study was to characterise the BIM-23027-sensitive and -insensitive SRIF binding sites in more detail and to compare their properties with those of the recombinant sst2 receptor stably expressed in mouse fibroblast (Ltk–) cells. SRIF-14, SRIF-28, CGP-23996 and D Trp8-SRIF-14 abolished [125I]-Tyr11-SRIF-14 binding (pIC50 values, 8.7–9.7) but the competition curves had Hill slopes which were less than unity. Octreotide and L-362,855 inhibited binding over a wide concentration range (0.1 nM-1 μM) and inhibition of binding was incomplete at the highest concentration studied. BIM-23056 (pIC50 〈6.5) was a weak inhibitor of [125]-Tyr11-SRIF-14 binding. GTPγS decreased [125I]-Tyr11-SRIF-14 binding by 40%. Further binding experiments with [125I]-Tyr11-SRIF-14 were carried out in RDCM in the continuous presence of BIM-23027 (1 μM). Under these conditions, seglitide had no effect on [125I]-Tyr11-SRIF-14 binding at concentrations up to 10 μM, whilst SRIF-14 and SRIF-28 abolished specific [125I]-Tyr11-SRIF-14 binding in a manner which was consistent with the ligand binding to two sites. SRIF-14 and SRIF-28 displayed high affinity (pIC50 values of 9.8 and 9.3 respectively) for approximately 70% of these binding sites and low affinity (pIC50 values of 7.8 and 7.3) for the remaining sites. Octreotide, L-362,855 and BIM-23056 were weak inhibitors of [125I]-Tyr11-SRIF-14 binding (pIC50 〈6.5). [125I]-BIM-23027 labelled a single population of SRIF binding sites in RDCM membranes and mouse fibroblast (Ltk–) cells stably expressing the human recombinant sst2 receptor. There was a significant correlation between the affinity estimates of a range of SRIF analogues at inhibiting [125I]-BIM-23027 binding in RDCM membranes and binding to the recombinant sst2 receptor in Ltk– cells, suggesting that the sites labelled by [125I]-BIM-23027 in RDCM are similar to the sst2 receptor. GTPγS (100 μM) decreased [125I]-BIM-23027 binding in RDCM by 60%. The results from these studies demonstrate that [125I]-Tyr11-SRIF-14 labels a heterogeneous population of high affinity SRIF binding sites in RDCM membranes. The majority of these sites are insensitive to GTPγS and display negligible affinity for the cyclic hexapeptides, BIM-23027 and seglitide. The remaining high affinity binding sites can be selectively labelled with [125I]-BIM-23027, are sensitive to GTPγS and show similar characteristics to the recombinant sst2 receptor which appears to mediate the antisecretory effects of SRIF in the mucosa (McKeen ES, Feniuk W, Humphrey PPA (1995) Naunyn-Schmiedeberg‘s Arch Pharmacol 352:402–411).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 352 (1995), S. 402-411 
    ISSN: 1432-1912
    Keywords: Electrogenic ion transport ; Rat ; colonic mucosa ; Somatostatin (SRIF) ; BIM-23027 ; BIM-23056 ; L-362855 ; Seglitide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The aim of this study was to examine the potencies of several recently identified selective somatostatin (SRIF)-receptor ligands as inhibitors of electrogenic ion transport in the rat distal colonic mucosa with the view to identifying the SRIF receptor type involved. Under basal conditions, cumulative administration of SRIF and SRIF2g decreased short circuit current (SCC), a measure of electrogenic ion transport, with EC50 values of 4 nM and 9 nM respectively. The peptidase inhibitors, phosphoramidon (1 μM) and amastatin (10 μM), had no effect on the potencies of either SRIF or SRIF28. The inhibitory action of SRIF on basal SCC was suppressed by piretanide and diphenylamine-2-carboxylate, compatible with the assumption that the Na+K+2Cl− co-transporter and Cl− channels, respectively, may be involved in this antisecretory action of SRIF. Tetrodotoxin (1 μM) had no effect on the antisecretory action of SRIF, suggesting that the process was not neuronally mediated. All of the SRIF analogues examined, with the exception of BIM-23056, maximally inhibited basal SCC to a similar extent as SRIF. Seglitide and octreotide were both more potent antisecretory agents than SRIF (respective EC50 values, 0.4 nM and 1.5 nM) suggesting that this effect was mediated by a receptor belonging to the SRIF1 receptor group. The most distinguishing feature of the rank order of agonist potencies was the high potency of the selective sst2 receptor ligand, BIM-23027 (EC50, value 0.32 nM), the weaker potency exhibited by the selective sst5 receptor ligand, L-362855 (EC50 value 21 nM), and the lack of agonist activity displayed by the selective sst3 receptor ligand, BIM-23056 (EC50 value 〉 1000 nM). This profile is comparable with that observed in binding studies on the recombinant sst2 receptor. Forskolin-stimulated secretion was suppressed by SRIF analogues with the rank order of agonist potencies BIM-23027 〉 SRIF 〉 L-362855 〉 BIM-23056 which resembled that exibited under basal conditions. However, the absolute potencies of these agonists were lower (respective EC50 values 2 nM, 14 nM, 38 nM and 〉 1000 nM) whilst the magnitude of inhibition was about three fold greater. BIM-23027 and SRIF (both 30 nM) also inhibited carbachol-stimulated increases in basal SCC by 60–70%, while a similar concentration of L-362855 inhibited these responses by 11 %. BIM-23056 (1 μM) had no effect on carbachol-simulated secretion. Radioligand binding studies on rat colonic mucosal membranes using [125I]-Tyr11-SRIF suggested heterogeneity of SRIF binding sites. Thus, SRIF and SRIF28 competed for binding (IC50 values, 0.32 and 0.63 nM, respectively) with Hill slopes less than unity; while seglitide and BIM-23027 both maximally displaced only 30–40% of specific binding with apparent high affinity (respective pIC50 values, 10.1 nM and 10.0). In conclusion, SRIF decreases basal as well as both cAMP and Ca2+-dependent Cl− secretion in rat colonic mucosa. The rank order of agonist potencies suggests that receptors resembling the recombinant sst2 receptor mediate inhibition of basal and forskolin-stimulated secretion. Radioligand binding studies suggest that BIM-23027 interacts with a sub-population of [125I]Tyr11-SRIF binding sites in rat colonic mucosal membranes which probably correspond to the receptors mediating the antisecretory effects described here.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 354 (1996), S. 543-549 
    ISSN: 1432-1912
    Keywords: Somatostatin ; BIM-23027 ; Rat colonic mucosa ; sst2 receptors ; SRIF-binding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We have previously shown that the somatostatin (SRIF) sst2 receptor-selective peptide, BIM-23027, is a potent antisecretory agent in rat isolated distal colonic mucosa (RDCM) and in radioligand binding studies in RDCM membranes, it only maximally inhibited approximately 40% of [125I]-Tyr11-SRIF-14 binding (McKeen ES, Feniuk W, Humphrey PPA (1995) Naunyn-Schmiedeberg's Arch Pharmacol 352:402–411). The aim of this study was to characterise the BIM-23027-sensitive and -insensitive SRIF binding sites in more detail and to compare their properties with those of the recombinant sst2 receptor stably expressed in mouse fibroblast (Ltk−) cells. SRIF-14, SRIF-28, CGP-23996 and D Trp8-SRIF-14 abolished [125I]-Tyr11-SRIF-14 binding (pIC50 values, 8.7–9.7) but the competition curves had Hill slopes which were less than unity. Octreotide and L-362,855 inhibited binding over a wide concentration range (0.1 nM-1 μM) and inhibition of binding was incomplete at the highest concentration studied. BIM-23056 (PIC50 〈6.5) was a weak inhibitor of [125]-Tyr11-SRIF-14 binding. GTPγS decreased [125I]-Tyr11-SRIF-14 binding by 40%. Further binding experiments with [125I]-Tyr11-SRIF-14 were carried out in RDCM in the continuous presence of BIM-23027 (1 μM). Under these conditions, seglitide had no effect on [125I]-Tyr11-SRIF-14 binding at concentrations up to 10 μM, whilst SRIF-14 and SRIF-28 abolished specific [125I]-Tyr11-SRIF-14 binding in a manner which was consistent with the ligand binding to two sites. SRIF-14 and SRIF-28 displayed high affinity (pIC50 values of 9.8 and 9.3 respectively) for approximately 70% of these binding sites and low affinity (pIC50 values of 7.8 and 7.3) for the remaining sites. Octreotide, L-362,855 and BIM-23056 were weak inhibitors of [125I]-Tyr11-SRIF-14 binding (PIC50 〈6.5). [125I]-BIM-23027 labelled a single population of SRIF binding sites in RDCM membranes and mouse fibroblast (Ltk−) cells stably expressing the human recombinant sst2 receptor. There was a significant correlation between the affinitestimates of a range of SRIF analogues at inhibiting [125I]-BIM-23027 binding in RDCM membranes and binding to the recombinant sst2 receptor in Ltk− cells, suggesting that the sites labelled by [125I]-BIM-23027 in RDCM are similar to the sst2 receptor. GTPγS (100 μM) decreased [125I]-BIM-23027 binding in RDCM by 60%. The results from these studies demonstrate that [125I]-Tyr11-SRIF-14 labels a heterogeneous population of high affinity SRIF binding sites in RDCM membranes. The majority of these sites are insensitive to GTPγS and display negligible affinity for the cyclic hexapeptides, BIM-23027 and seglitide. The remaining high affinity binding sites can be selectively labelled with [125I]-BIM-23027, are sensitive to GTPγS and show similar characteristics to the recombinant sst2 receptor which appears to mediate the antisecretory effects of SRIF in the mucosa (McKeen ES, Feniuk W, Humphrey PPA (1995) Naunyn-Schmiedeberg's Arch Pharmacol 352:402–411).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...