GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 101 (2000), S. 613-624 
    ISSN: 1432-2242
    Keywords: Keywords Melon (Cucumis melo L.) ; Fruit ripening ; Ethylene production rate ; Postharvest fruit decay ; Shelf-life ; ACC oxidase ; ACC synthase ; SSR ; RFLP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Sixty three cultigens from eight market types of the melon (Cucumis melo L. subsp. melo) groups Cantaloupensis and Inodorus were evaluated for ethylene production rate, shelf-life (postharvest decay), and RFLP polymorphisms. The ethylene production rates of melon fruits at maturity and (after) postharvest decay were measured on individual genotypes. The ethylene production rates of individual genotypes ranged from undetectable to 103 nl/g per h. The mean ethylene production rates of the eight market types, ranked from highest to lowest, were Eastern U.S. type, Charentais, Western U.S. type, Long Shelf-Life cantaloupes (LSL), Galia, Ananas, Honeydew, and Casaba. Ethylene production and postharvest decay rating were positively significantly correlated (r 2=0.87, P=0.05). Orange-fleshed melon fruits produced significantly (P=0.05) more ethylene than did green- or white-fleshed types. Melon fruits with a netted rind had significantly (P=0.05 for orange-flesh fruits and 0.01 for green- or white-flesh fruits) higher ethylene production than did smooth-type fruits. Using probes made from cDNAs encoding ACC oxidase (MEL1) or ACC synthase (MEACS1) genes, RFLPs were detected melon cultigens of the eight marker types showing varying ethylene production rates and different flesh colors. Low ethylene production and green- and white-flesh color were associated (r 2=0.91; P=0.05) with the presence of a putative RFLP-MEL1 allele A 0 (15-kb), whereas high ethylene production and orange-flesh color were associated with allele B 0 (8.5-kb) in the homozygous condition, after probing MEL1 with EcoRV-digested genomic DNA. Also, after probing MEACS1 with NdeI-digested genomic DNA, RFLP polymorphism revealed five fragments denoted as A, B, C, D and E, with molecular sizes of 5.2-, 4.2-, 3.8-, 3.0- and 1.0-kb, respectively. A two-fragment pattern, AB, and a three-fragment pattern, ACE, the two predominant RFLP patterns, were also associated with low and high ethylene production, respectively. The ACE fragment pattern was also associated with orange-flesh melons. Scoring of both probes allowed for the unique classification of most melon market types consistent with ethylene production and the postharvest decay phenotypes. Therefore, these RFLPs might have utility in marker-assisted selection for the development of melons with enhanced postharvest keeping ability.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Cucumis melo ; Molecular markers ; RAPD ; CAPS ; RFLP ; Fusarium oxysporum ; Fusarium resistance ; Marker-assisted selection (MAS)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Fusarium wilt, caused by Fusarium oxysporum Schlecht f. sp. melonis Snyder & Hans, is a worldwide soil-borne disease of melon (Cucumis melo L.). Resistance to races 0 and 1 of Fusarium wilt is conditioned by the dominant gene Fom-2. To facilitate marker-assisted backcrossing with selection for Fusarium wilt resistance, we developed cleaved amplified polymorphic sequences (CAPS) and restriction fragment length polymorphisms (RFLP) markers by converting RAPD markers E07 (a 1.25-kb band) and G17 (a 1.05-kb band), respectively. The RAPD-PCR polymorphic fragments from the susceptible line ’Vedrantais’ were cloned and sequenced in order to construct primers that would amplify only the target fragment. The derived primers, E07SCAR-1/E07SCAR-2 from E07 and G17SCAR-1/G17SCAR-2 from G17, yielded a single 1.25-kb fragment (designated SCE07) and a 1.05-kb fragment (designated SCG17) (the same as RAPD markers E07 and G17), respectively, from both resistant and susceptible melon lines, thus demonstrating locus-specific associated primers. Potential CAPS markers were first revealed by comparing sequence data between fragments amplified from resistant (PI 161375) and susceptible (’Vedrantais’) lines and were then confirmed by electrophoresis of restriction endonuclease digestion products. Twelve restriction endonucleases were evaluated for their potential use as CAPS markers within the SCE07 fragment. Three (BclI, MspI, and BssSI) yielded ideal CAPS markers and were subsequently subjected to extensive testing using an additional 88 diverse melon cultigens, 93 and 119 F2 individuals from crosses of ’Vedrantais’ x PI 161375 and ’Ananas Yokneam’×MR-1 respectively, and 17 families from a backcross BC1S1 population derived from the breeding line ’MD8654’ as a resistance source. BclI- and MspI-CAPS are susceptible-linked markers, whereas the BssSI-CAPS is a resistant-linked marker. The CAPS markers that resulted from double digestion by BclI and BssSI are co-dominant. Results from BclI- and MspI-CAPS showed over 90% accuracy in the melon cultigens, and nearly 100% accuracy in the F2 individuals and BC1S1 families tested. This is the first report of PCR-based CAPS markers linked to resistance/susceptibility for Fusarium wilt in melon. The RFLP markers resulting from probing with a clone-derived 1.05-kb SCG17 PCR fragment showed 85% correct matches to the disease phenotype. Both the CAPS and RFLP markers were co-dominant, easier to score, and more accurate and consistent in predicting the melon phenotype than the RAPD markers from which they were derived.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...