GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pseudomonas putida  (2)
  • 1
    ISSN: 1572-8773
    Keywords: Iron transport ; Siderophores ; Pseudomonas putida ; Genetics ; Receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Root-colonizingPseudomonas putida WCS358 enhances growth of potato in part by producing under iron-limiting conditions a yellow-green, fluorescent siderophore designated pseudobactin 358. This siderophore efficiently complexes iron(III) in the rhizosphere, making it less available to certain endemic microorganisms, including phytopathogens, thus inhibiting their growth. At least 15 genes distributed over five gene clusters are required for the biosynthesis of pseudobactin 358. High-affinity iron(III) transport in strain WCS358 is initiated by an 86-kDa outer membrane receptor protein (PupA) which appears to be specific for ferric pseudobactin 358. PupA shares strong similarity with TonB-dependent receptor proteins ofEscherichia coli, which suggests a TonB-like protein in strain WCS358 is required for iron(III) transport. Strain WCS358 possesses a second uptake system for ferric pseudobactin 358 and structurally diverse ferric siderophores produced by other microorganisms. A second receptor gene (pupB) responsible for iron transport from pseudobactin BN7 or pseudobactin BN8 has been identified. The production of this and certain other ferric siderophore receptor proteins requires that strain WCS358 be grown in the presence of these siderophores. An apparent regulatory gene required for the expression ofpupB is located adjacent topupB. Two positive regulatory genes have been identified which can independently activate, under low-iron(III) conditions, transcription of genes coding for the biosynthesis of pseudobactin 358.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Regulation ; Siderophores ; Pseudomonas putida ; GroES ; GroEL
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pseudobactin 358 is the yellow-green fluorescent siderophore [microbial iron(III) transport agent] produced by Pseudomonas putida WCS358 under iron-limiting conditions. The genes encoding pseudobactin 358 biosynthesis are iron-regulated at the level of transcription. In this study, the molecular characterization is reported of a cosmid clone of WCS358 DNA that can stimulate, in an iron-dependent manner, the activity of a WCS358 siderophore gene promoter in the heterologous Pseudomonas strain A225. The functional region in the clone was identified by transposon mutagenesis and DNA sequencing as the groESL operon of strain WCS358. This increase in promoter activity was not observed when the groESL genes of strain WCS358 were integrated via a transposon vector into the genome of Pseudomonas A225, indicating that multiple copies of the operon are necessary for the increase in siderophore gene promoter activity. Amplification of the Escherichia coli and WCS358 groESL genes also increased iron-regulated promoter activity in the parent strain WCS358. The groESL operon codes for the chaperone proteins GroES and GroEL, which are responsible for mediating the folding and assembly of many proteins.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...