GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 338 (1988), S. 133-137 
    ISSN: 1432-1912
    Keywords: Neuromuscular junction ; Acetylcholine release ; Motor nerve terminals ; Potassium channels ; Presynaptic currents
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Catechol, guanidine, noradrenaline, and phencyclidine can increase acetylcholine release at neuromuscular junctions. To determine if they act by affecting nerve terminal action potentials, the electrical activity of the terminal regions of motor nerves was recorded with an extracellular electrode inserted in the perineural sheaths of nerves in the mouse triangularis sterni preparation. Catechol (from 10 μM) and guanidine (from 1 mM) produced a selective reduction in the component of the perineural waveform associated with voltage-dependent K+ currents, without significant effects on Na+, Ca+, or Ca2+-activated K+ currents. A selective block of K+ channels in nerve terminals would cause a prolonged depolarization and hence a large influx of Ca2+ to trigger acetylcholine release; this could explain the facilitatory effects of guanidine and catechol. Noradrenaline produced a slight increase in the amplitude of the. perineural waveform. This is consistent with hyperpolarization of the resting membrane potential of the nerve, which could lead to facilitation of acetylcholine release. Phencyclidine blocked Na+- and K+-related portions of the signal.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...