GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Small-diameter (〈6 mm) clinically available vascular grafts often fail due in part to the inherent thrombogenicity of artificial polymers. Transplantation of endothelial cells onto the lumen of these vascular grafts has been suggested as one method to overcome this thrombogenicity. We have developed a compliant polyurethaneurea (PEUU) 4-mm graft with a luminal surface modified by a glow discharge gas plasma. Autologous microvessel endothelial cells were isolated from canine falciform ligament fat, were transplanted onto the luminal surface of the grafts using an intraoperative isolation and sodding technique, and both endothelial-cell-treated and non-cell-treated grafts were placed as bilateral carotid interposition grafts in a canine model. After 5 weeks of implantation, explanted control (non-cell-treated) grafts exhibited a deposition of platelets, white cells and fibrin characteristic of a thrombogenic surface. MVEC sodded grafts exhibited a multicellular lining within but distinct from the lumen of the PEUU graft. The blood-contacting surface of this lining exhibited an antithrombogenic endothelial cell monolayer. We suggest that the PEUU graft supported the initial deposition of MVEC and development of an endothelial cell lining. During the 5 weeks of implantation this lining continued to proliferate and detached from the PEUU graft substratum. The final neocellular lining exhibited a luminal diameter and histological features similar to a native artery.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 28 (1994), S. 203-212 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Small diameter (〈6 mm) synthetic vascular grafts fail at a clinically unacceptable rate due in large part to their inherent thrombogenicity. The development of a new cellular lining on synthetic vascular grafts would most likely improve the patency rates observed for these grafts in small diameter positions. We have evaluated the use of endothelial cell transplantation to accelerate the formation of a cell lining using microvascular endothelial cells derived from canine falciform ligament fat. This source of fat is histologically similar to human liposuction fat and was isolated using a collagenase digestion technique identical to methods used for human liposuction fat microvessel endothelial cell isolation. The isolated fat endothelial cells were sodded onto 4 mm ePTFE grafts using pressure to force the cells onto the luminal surface. This pressure sodding method permitted cell deposition in less then 3 min. Sodded and control (non - cell-treated) grafts were implanted as interpositional paired grafts using end-to-end anastomoses in the carotid arteries of mixed breed dogs. Each dog therefore received a sodded graft on one side and a control graft on the contralateral side. After 12 weeks of implantation all control grafts were occluded while 86% of the cell-sodded grafts remained patent. Statistical evaluation of the data revealed a significant improvement in patency of cell sodded grafts (McNemar's χ2 P =.02). Morphological evaluation of grafts explanted at 5, 12, 26, and 52 weeks following implantation revealed the presence of a cell lining on sodded grafts which remained stable for a period of at least one year. This new cell lining exhibited morphologic characteristics of a nonthrombogenic endothelial cell lining. The development of this new intima, evaluated 5 weeks-1 year after implantation, was not associated with a progressive intimal hyperplasia. From these data we conclude that microvessel endothelial cells derived from canine falciform ligament fat can be rapidly isolated using an operating room compatible method. Cell deposition on synthetic grafts is subsequently accelerated using a pressure sodding technique. A cellular lining forms on the inner surface and is associated with a statistically significant improvement in the function of sodded grafts in a canine carotid artery model. © 1994 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 36 (1997), S. 498-507 
    ISSN: 0021-9304
    Keywords: endovascular grafts ; ePTFE ; balloon angioplasty ; stents ; biomaterial ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The search for less invasive treatments for cardiovascular disease has lead to the development of endovascular stent grafts, metallic and alloy stents surrounded by prosthetic vascular graft material. Introduced intravascularly, the deployment of stent grafts requires balloon dilatation of the device which results in expansion of the stent along with the vascular graft material. We hypothesized that balloon dilatation of stent grafts would alter the physical structure of the prosthetic graft material. In this study, noncompliant angioplasty balloons were used to dilate expanded polytetrafluoroethylene (ePTFE), a material commonly used for endovascular stent-graft technology. The maximal outer diameter (inflated balloon within the lumen) and the recoiled outer diameter (balloon removed) of two types of ePTFE, 3-mm inside diameter (i.d.) thin wall (30-μm internodal distance) and 4-mm i.d. standard wall (30-μm internodal distance), were measured to compare material recoil. Following balloon dilatation, ePTFE samples were prepared for scanning electron microscopic examination and the following parameters were measured: wall thickness, internodal distance, nodal width, interfiber distance, and fiber width. Following primary dilatation, both types of ePTFE recoiled approximately 20% regardless of inflated balloon diameter. However, following eight repetitive balloon dilatations, recoil decreased to approximately 10%. Scanning electron microscopic analysis revealed variations in internodal distance and significant decreases in wall thickness, nodal thickness, and interfiber distance. Fiber width was significantly decreased following dilatation of 3 mm, but not 4 mm ePTFE. Our data support our initial hypothesis that balloon dilatation alters the structure of ePTFE. © 1997 John Wiley & Sons, Inc. J Biomed Mater Res, 36, 498-507, 1997.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 34 (1997), S. 463-476 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Healing of biomaterial implants varies depending on the type and structure of material and the tissue surrounding the implant. In this study we examined structural differences of 30 μm, 60 μm, and 100 μm expanded polytetrafluoroethylene (ePTFE) using scanning electron microscopy, and we also investigated differences in healing for these three different porosity ePTFE grafts implanted within subcutaneous tissue and adipose tissue. Scanning electron microscopic examination of 30 μm, 60 μm, and 100 μm ePTFE revealed structural differences and differences in fiber density within the internodal space. Circular patches (6 mm in diameter) of 30 μm ePTFE were implanted within subcutaneous tissue and epididymal fat pads of male Sprague-Dawley rats. After 5 weeks, the implants were removed and analyzed for fibrous capsule formation, endothelialization, and for activated monocytes and macrophages in association with the material. Histological evaluation revealed dense fibrous capsule formation surrounding only the 30 μm ePTFE subcutaneous implants. From immunohistochemistry data obtained, we generated an Endothelialization Index (measure of neovascularization) and a Monocyte/Macrophage Index (measure of inflammatory response) for each sample. Consistently, 60 μm ePTFE had the greatest Endothelialization Index at both implant sites while 100 μm ePTFE generally had the largest values for the Monocyte/Macrophage Index. These data indicate that both the structure of the material and the site of implant influence the healing characteristics of ePTFE and suggest that activated monocytes and/or macrophages associated with the implant may inhibit endothelialization of ePTFE. © 1997 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 35 (1997), S. 473-481 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The preclinical evaluation of polymer biocompatibility is often performed using animal subcutaneous implant models. The choice of subcutaneous tissue as the implant site is due to a number of factors including simplicity of the surgery involved. Results from subcutaneous implants cannot necessarily be extrapolated to other tissues due to the differences in cellular composition of tissues. We have evaluated and compared the healing characteristics of expanded polytetrafluoroethylene (ePTFE) discs implanted in either subcutaneous tissue or epididymal fat pad tissue in rats. Following 3 and 5 weeks of implantation, the healing characteristics of discs were evaluated histologically with particular emphasis on tissue and polymer neovascularization. Implants placed in subcutaneous tissue exhibited limited formation of new microvascular elements within and directly in contact with the polymer, and the formation of an extensive fibrous capsule. In contrast, ePTFE implanted in the epididymal fat pads of rats exhibited extensive neovascularization of tissue surrounding the polymer, penetration of these microvascular cells into the graft interstices for distances ≤ 100 microns and no morphological evidence of a fibrous capsule. The rat epididymal fat pad provides an alternative tissue for polymer healing evaluations. Due to the extensive presence of fat in subcutaneous tissue in humans, we suggest the fat pad model provides a more relevant preclinical evaluation of the healing characteristics of polymers used clinically in anatomic positions which contain significant amounts of fat. © 1997 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Human adult aortic endothelial cell attachment to polyethyleneterephthalate (PET as mylar film) was examined in vitro. PET was examined in both the unmodified form (PET -) and in a modified form (PET +) that had undergone plasma discharge surface modification (PDSM). These surfaces were compared to unmodified tissue culture polystyrene (PS -). The kinetics of attachment and the force of attachment using the rotating disc were determined as a function of surface and substrate protein applied to the surface. Four proteins - fibronectin, collagen I/III, collagen IV/V, and laminin - were added and compared to saline pretreatment. The most significant variable affecting attachment was the time of incubation. When corrected for time, PET + demonstrated significantly superior attachment kinetics when compared to PET - in most cases. These kinetics were similar to those seen on PS-. Fibronectin precoating of the surface greatly enhanced attachment kinetics on PET + and PS- but to a much lesser degree on PET-. The fibronectin effect was synergistic with PDSM, suggesting that PDSM enhances protein adsorption on the surface. The force of attachment was generally independent of incubation time and surface/substrate combination except for laminin precoating. Taken together, these data indicate that human endothelial cell adherence to PET may be significantly enhanced by PDSM and surface precoating with fibronectin. Attachment occurs rapidly and, once attached, the cells demonstrate a very firm attachment force capable of resisting shear stresses up to 90 dynes/cm2.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 41 (1998), S. 364-370 
    ISSN: 0021-9304
    Keywords: polymers ; endovascular grafts ; healing ; inflammation ; neovascularization ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Deployment of endovascular grafts composed of a metallic stent surrounded by expanded polytetrafluoroethylene (ePTFE) stretches the polymer beyond its original dimensions, altering the structural characteristics of the ePTFE. We hypothesized this structural modification would alter the healing response associated with the implant. In this study, 4 mm i.d. of ePTFE (30 μm internodal distance) vascular grafts were balloon dilated using angioplasty balloons having final diameters of 6 (1.5X), 8 (2X), 10 (2.5X), 12 (3X), and 18 (4.5X) mm. Following balloon dilatation of the ePTFE, a circular punch (6 mm in diameter) was used to prepare polymer samples for implantation. The ePTFE circular patches were implanted within subcutaneous tissue and epididymal fat pads of male Sprague-Dawley rats. After 5 weeks, the implants were removed and analyzed for fibrous capsule formation, inflammation, and neovascularization associated with the material. Histological analysis revealed the formation of fibrous capsules only with control subcutaneous implants. The inflammatory response associated with subcutaneously implanted ePTFE was decreased significantly following balloon dilatation to at least 2.5 times the original diameter of the graft. In contrast, ePTFE implanted within adipose tissue demonstrated a significantly greater inflammatory response following balloon dilatation when compared to control implants. Only ePTFE balloons dilated to 6 mm and implanted within adipose tissue demonstrated neovascularization to any extent. These data suggest the structural modifications incurred by ePTFE following balloon dilatation dramatically affect the inflammatory response associated with an implant. Therefore, polymeric materials used for endovascular graft technology require designs that consider changes in polymer healing inherent to device design. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 41, 364-370, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...