GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (2)
Document type
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Basel : Wiley-Blackwell
    Die Makromolekulare Chemie, Theory and Simulations 2 (1993), S. 747-760 
    ISSN: 1018-5054
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In this paper, the Monte Carlo method for numerically simulating the kinetics and chain-length distribution in radical polymerization is described. Because the Monte Carlo method is not subject to the assumption of steady-state, it is particularly suitable for studying the kinetic behaviour before the steady-state has been reached and for systems in which the steady-state assumption may be violated. Illustrative applications of the algorithm given in this paper not only demonstrate convincingly both the feasibility and usefulness of the algorithm, but also provide some new insight into the illustrative examples. For the case of pseudostationary radical polymerization such as rotating-sector and pulsed-laser initiations, we have found that the pseudostationary radical concentration can be reached after two or three initiation periods. However, the number-average chain-length x̄n reaches the pseudostationary value much slower than the radical concentration. It is oscillatively reaching the pseudostationary value, and the amplitudes of the oscillations are decreasing with time. We have also found that the chain-length distribution of the resulting polymer in the case of pseudostationary radical polymerization with termination by combination has stronger periodic modulation. Hence, it should be easier to locate the points of inflection in practice. Therefore, the rate constant of propagation, kp, can be determined precisely for systems which are dominated by a combination-type of termination.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Macromolecular Theory and Simulations 3 (1994), S. 731-741 
    ISSN: 1022-1344
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The Monte Carlo method has been used to simulate the phase separations of block copolymers and of corresponding blends with very high concentration (sum of volume fractions of blocks A and B: φA + φB = 0,9545). Our main findings are as follows: (1) The mixing is nonrandom even in the athermal limit. (2) The nonselective good solvent molecules (φV = 0,0455) are mostly located at the interface between A- and B-rich phases, thus, it is not true that solvent and monomeric units will remain mixed at all temperatures. (3) Even for the same microscopic A-B interaction energy, ε, and at the same temperature, the Flory-Huggins parameter χ of block copolymers is always higher than that of corresponding blends, and the χ values of block copolymers and corresponding blends have different ε-dependencies. (4) The critical values of χ both for block copolymer and corresponding blend are obtained and compared with the meanfield theoretical predictions. It is found that the ratio of χc (block)/χc (blend) is qualitatively compatible with the prediction of the Flory-Leibler theory.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...