GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Key words: Chloroplast envelope membrane ; Galactosyltransferase ; Sulfolipid ; 16:3/18:3 plants ; Sulfoquinovosyltransferase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. In experiments on the assembly of the sulfolipid sulfoquinovosyl diacylglycerol in envelope membranes of chloroplasts, UDP-sulfoquinovose (UDPS) was used with highest efficiency, and the corresponding enzyme, UDP-sulfoquinovose:diacylglycerol sulfoquinovosyltransferase, was partially characterized (E. Heinz et al., 1989, Eur J Biochem 184: 445–453). Here, we identified 35S- and 33P-labelled UDPS from various photosynthetically active organisms, suggesting that the sulfosugar nucleotide used for sulfolipid biosynthesis throughout the plant kingdom, including phototrophic bacteria, may indeed be UDPS. For attribution of the sulfolipid synthase to one of the two plastidial envelope membranes, these membranes were isolated from pea and spinach chloroplasts. The sulfoquinovosyltransferase was localized in the inner membrane of envelopes, which also contains the competing UDP-galactose:diacylglycerol galactosyltransferase. In contrast to the sulfoquinovosyltransferase, a substantial proportion of the galactosyltransferase was found in the outer membranes of envelopes from pea chloroplasts.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: chilling sensitivity ; glycerolipid biosynthesis ; immunoscreening ; Pisum sativum ; tryptic sequences ; transit peptide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The soluble acyl-ACP:sn-glycerol-3-phosphate acyltransferase from chloroplasts of chilling-sensitive and -resistant plants differ in their fatty acid selectivity. Enzymes from resistant plants discriminate against non-fluid palmitic acid and select oleic acid whereas the acyltransferase from sensitive plants accepts both fatty acids. To use this difference for improving plant chilling resistance by biotechnology the gene for an oleate-selective enzyme is required. Therefore, the oleate-selective enzyme from pea seedlings was purified to apparent homogeneity. Tryptic peptides of internal origin were sequenced. Polyclonal antibodies raised in rabbits were used for an immunological screening of a pea leaf cDNA expression library in λgt11. A positive clone of 1800 bp was selected showing an open reading frame which codes for 457 amino acids. The deduced amino acid sequence coincides perfectly with the tryptic sequences. A tentative assignment of the processing site was made which divides the preprotein into a mature protein of 41 kDa in accordance with experimental findings and a transit peptide of 88 amino acids. At present the comparison between a selective (pea) and an unselective (squash) acyltransferase sequence does not provide a clue for recognizing the structural differences resulting in different selectivities.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...