GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PDE-isoenzymes  (1)
  • atrial relaxation and contraction  (1)
  • 1
    ISSN: 1573-4919
    Keywords: human atrium ; β2-adrenoceptors ; receptor binding ; zinterol ; adenylyl cyclase stimulation ; atrial relaxation and contraction ; protein phosphorylation ; troponin I ; C-protein ; phospholamban
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Evidence from ventricular preparations of cat, sheep, rat and dog suggests that both β1-adrenoceptors (β1AR) and β2-adrenoceptors (β2AR) mediate positive inotropic effects but that only β1AR do it through activation of a cAMP pathway. On the other hand, our evidence has shown that both β1 AR and β2 AR hasten relaxation of isolated human myocardium consistent with a common cAMP pathway. We have now investigated in the isolated human right atrial appendage, a tissue whose β-AR comprise around 2/3 of β1AR and 1/3 of β2AR, whether or not β2AR-mediated effects occur via activation of a cAMP pathway. We carried out experiments on atria obtained from patients without advanced heart failure undergoing open heart surgery. To activate β2AR, we used the β2AR-selective ligand zinterol. Experiments were carried out on paced atrial strips (1 Hz) and tissue homogenates and membrane particles. Zinterol caused positive inotropic and lusitropic (i.e. reduction of t1:2 of relaxation) effects with EC50 values of 3 and 2 nM, respectively. The zinterol-evoked effects were unaffected by the β AR-selective antagonist CGP 20712A (300 nM) but blocked surmountably by the β2AR-selective antagonist ICI 118551 (50 nM) which reduced both EC50 values to 1 μM. Zinterol stimulated adenylyl cyclase activity with an EC50 of 30 nM and intrinsic activity of 0.75 with respect to (−)-isoprenaline (600 μM); the effects were resistant to blockade by CGP 20712A (300 nM) but antagonised surmountably by ICI 118551 (50 nM). Zinterol bound to membrane PAR labelled with (−)-[125I] cyanopindolol with higher affinity for β2AR than for β- 1 AR; the binding to β2AR but not to β- BAR was reduced by GTPyS (10 μM). In the presence of CGP 20712A (300 nM) (−)-isoprenaline (400 μM); (to activate both β1AR and β2AR maximally) and zinterol (10 μM); increased contractile force 3.4-fold and 2.5-fold respectively and reduced relaxation tut by 32% and 18% respectively. These effects of (−)-isoprenaline and zinterol were associated (5 min incubation) with phosphorylation (pmol P/mg supernatant protein) of troponin I and C-protein to values of 8.4 ± 2.0 vs 12.4 ± 2.3 and 10.1 ± 2.5 vs 8.6 ± 1.6 respectively. (−)-Isoprenaline and zinterol also caused phosphorylation of phospholamban (1.8 ± 0.3 vs 0.4 ± 0.1 pmol P/mg respectively) specifically at serine residues. We conclude that in human atrial myocardium activation of both β1AR and β2AR leads to cAMP-dependent phosphorylation of proteins involved in augmenting both contractility and relaxation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 147 (1995), S. 115-122 
    ISSN: 1573-4919
    Keywords: cardioprotection ; delayed adaptation ; cAMP ; PDE-isoenzymes ; prolongation of protection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Mild (not harmful) stress may initiate anadaptive mechanism, protecting the heart from harmful consequences of a more severe stress. There are at least three known types of cardiac adaptation to stress such as: a) the gradually developing long lasting adaptation to chronic mechanical overload, leading to cardiac hypertrophy, later to cardiomyopathy and heart failure, b) the rapidly developing adaptation to moderate stress initiated by ‘preconditioning’ brief coronary occlusion(s) or brief periods of rapid cardiac pacing, protecting for less than 1 h against consequences of a subsequent, severe stress, c) the later appearing, more prolonged cardio-protective adaptation, described by us in 1983, induced by various forms of more severe but not injurious stimuli, such as an optimal dose of prostacyclin or its stable analogues; or a series of brief periods of rapid pacings. This form of cardiac adaptation to stress protects for 24–48 h against consequences of a more severe stress such as: 1. myocardial ischaemia; 2. early and late postocclusion and reperfusion arrhythmias; 3. early morphologic changes secondary to ischaemia and reperfusion; 4. ischaemia induced myocadial loss of K+ and accumulation of Na+ and Ca++; 5. it may increase the tolerance to the toxic effects of cardiac glycosides. A reduced response to beta-adrenergic stimuli and a concomitant increase in activity and amount of PDE I and IV was shown by us earlier. The hypothesis that these factors may play a role in the mechanism of delayed protection was confirmed by our present findings according to which 7-oxo-PgI2-treatment greatly attenuated the dose dependent isoprenaline-induced increase in contractility, relaxation and myocardial cAMP level in rat hearts isolated 48h after 7-oxo-PgI2. In addition all these values are in close correlation with each other. The endogenous ‘self-defence’ of the heart based on adaptation represents anew therapeutic concept, different from the classical drug-receptor interaction produced protection. Its possible exploitation to therapeutic use requires that the adaptation inducing stress should beapplicable topatients, furthermore prolongation of duration of protection should be possible. As a first step in testing applicability to therapy we had to show that drug induced adaptive protection is existing in the conscious animal. In our present study we found an attenuation of rapid pacing induced elevation of the ST-segment in the endocardial electrogram and in the left ventricular end diastolic pressure in conscious rabbits 24–48 h after treatment with Iloprost. Besides we found an attenuation of tachycardia and arrhythmias due to two stage coronary artery ligation in conscious dog 48 h after pretreatment with 7-oxo-PgI2. Finally we were able to demonstrate that protection against coronary artery occlusion-induced ST segment elevation and arrhythmias can be prolonged at will by periodically repeated maintenance doses.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...