GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, F., Lin, J., Zhou, Z., Yang, H., & Morgan, J. P. Mechanism of progressive broad deformation from oceanic transform valley to off-transform faulting and rifting. Innovation, 3(1), (2022): 100193, https://doi.org/10.1016/j.xinn.2021.100193.
    Description: Oceanic transform faults (TFs) are commonly viewed as single, narrow strike-slip seismic faults that offset two mid-ocean ridge segments. However, broad zones of complex deformation are ubiquitous at TFs. Here, we propose a new conceptual model for the progressive deformation within broad zones at oceanic TFs through detailed morphological, seismic, and stress analyses. We argue that, under across-transform extension due to a change in plate motion, plate deformation occurs first along high-angle transtensional faults (TTFs) within the transform valleys. Off-transform normal faults (ONFs) form when across-transform deviatoric extensional stresses exceed the yield strength of the adjacent oceanic lithosphere. With further extension, these normal faults can develop into off-transform rift zones (ORZs), some of which can further develop into transform plate boundaries. We illustrate that such progressive complex deformation is an inherent feature of oceanic TFs. The new conceptual model provides a unifying theory to explain the observed broad deformation at global transform systems.
    Description: We benefited from discussions with Drs. Tao Zhang, Huihui Weng, Yen Joe Tan, the SCSIO Deep Ocean Geodynamics Group, the CUHK Seismology Group, and the participants of the InterRidge transform fault workshop in France, 2018. This work was supported by the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0205), NSFC grants (41976064, 41890813, 41976066, 91628301, and 91858207), CAS grants (Y4SL021001, QYZDY-SSW-DQC005, 133244KYSB20180029, 131551KYSB20200021, and ISEE2021PY03), National Key R&D Program of China grants (2018YFC0309800 and 2018YFC0310105), the Guangdong Basic and Applied Basic Research Foundation (2021A1515012227), and Hong Kong Research Grant Council grants (14304820 and 14306119).
    Keywords: Transform fault deformation ; Off-transform faulting and rifting ; Plate rotation ; Transtensional fault ; Ridge-transform interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Tectonics 39(11), (2020): e2020TC006409, doi:10.1029/2020TC006409.
    Description: The dynamics of continental breakup at convergent margins has been described as the results of backarc opening caused by slab rollback or drag force induced by subduction direction reversal. Although the rollback hypothesis has been intensively studied, our understanding of the consequence of subduction direction reversal remains limited. Using thermo‐mechanical modeling based on constraints from the South China Sea (SCS) region, we investigate how subduction direction reversal controls the breakup of convergent margins. The numerical results show that two distinct breakup modes, namely, continental interior and edge breakup (“edge” refers to continent above the plate boundary interface), may develop depending on the “maturity” of the convergent margin and the age of the oceanic lithosphere. For a slab age of ~15 to ~45 Ma, increasing the duration of subduction promotes the continental interior breakup mode, where a large block of the continental material is separated from the overriding plate. In contrast, the continental edge breakup mode develops when the subduction is a short‐duration event, and in this mode, a wide zone of less continuous continental fragments and tearing of the subducted slab occur. These two modes are consistent with the interior (relic late Mesozoic arc) and edge (relic forearc) rifting characteristics in the western and eastern SCS margin, suggesting that variation in the northwest‐directed subduction duration of the Proto‐SCS might be a reason for the differential breakup locus along the strike of the SCS margin. Besides, a two‐segment trench associated with the northwest‐directed subduction is implied in the present‐day SCS region.
    Description: This research was supported by the Guangdong NSF research team project (2017A030312002), the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0205), the K. C. Wong Education Foundation (GJTD‐2018‐13), the Strategic Priority Research Program of the Chinese Academy of Science (XDA13010303), the Chinese Academy of Sciences (Y4SL021001, QYZDY‐SSWDQC005, 133244KYSB20180029, and ISEE2019ZR01), the NSFC project (41606073, 41890813, and 41576070), the IODP‐China Foundation, the OMG Visiting Fellowship (OMG18‐15), and the Hong Kong Research Grant Council Grants (Nos. 14313816 and 14304820).
    Description: 2021-04-06
    Keywords: Continental breakup ; Convergent margins ; Edge breakup ; Subduction direction reversal ; Proto‐South China Sea ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...