GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Nature. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (758 pages)
    Edition: 2nd ed.
    ISBN: 9780323860130
    DDC: 730
    Language: English
    Note: Intro -- Handbook of Recycling: State-of-the-art for Practitioners, Analysts, and Scientists -- Copyright -- Contents -- Contributors -- About the editors -- Part 1: Recycling in context -- Chapter 1: Introduction -- 1.1. The Challenges -- 1.2. The Role of Materials in Society -- 1.3. From Linear to Circular Economy -- 1.3.1. The Linear Economy -- 1.3.2. The Circular Economy -- 1.3.3. The R-Strategies -- 1.4. Recycling in the Circular Economy -- 1.4.1. Defining Recycling -- 1.4.2. Product and Material-Centric Perspectives -- 1.4.3. Environmental-Economic-Social Dimensions -- 1.5. The Book -- References -- Chapter 2: The fundamental limits of circularity quantified by digital twinning -- 2.1. Introduction -- 2.2. A Product and Material Focus on Recycling Within the CE -- 2.2.1. The Metal Wheel -- 2.2.2. Material-Centric Recycling: Aluminum Alloys -- 2.2.3. Material-Centric Recycling: Nonferrous Metals -- 2.2.4. Material-Centric Recycling: Polymer and Plastic Recycling -- 2.2.5. Product-Centric Recycling -- 2.3. Digital Twinning of the CE System: Understanding the Opportunities and Limits -- 2.4. Opportunities and Challenges -- References -- Chapter 3: Maps of the physical economy to inform sustainability strategies -- 3.1. Introduction -- 3.2. Dimensions of MFA -- 3.2.1. Stages and Trade -- 3.2.2. Layers -- 3.2.3. Time -- 3.2.4. Dimensions in Other Tools -- 3.3. Components for Monitoring the Physical Economy -- 3.4. Application of the Framework: Maps of the Aluminum Cycle -- 3.4.1. Global Aluminum Cycle-Energy Use and GHG Emissions -- 3.4.2. Global Aluminum Alloy Cycle-Cascading Use and Concern for Scrap Surplus -- 3.4.3. Plant-Level Physical Maps-Illustration of the Multilayer Concept -- 3.5. Recommendations -- Acknowledgments -- References. , Chapter 4: Material efficiency-Squaring the circular economy: Recycling within a hierarchy of material management strate -- 4.1. Is a Circular Economy Possible or Desirable? -- 4.2. Hierarchies of Material Conservation -- 4.2.1. Reduce -- 4.2.1.1. Simplicity, Austerity, Poverty: Reducing Demand for Material Services -- 4.2.1.2. Intensifying Use: Reducing Demand for Excess Capacity -- 4.2.1.3. Life Extension: Reducing Demand for Replacement -- 4.2.1.4. Lightweight Design: Reducing Excess Material Use -- 4.2.1.5. Improving Yield: Reducing Scrap Rates in Production -- 4.2.2. Reuse -- 4.2.2.1. Reusing Products: Upgrade and Second-Hand Sales -- 4.2.2.2. Reusing Components: Modularity -- 4.2.2.3. Reusing Material: Cutting Bits Out -- 4.2.2.4. Diverting Scrap -- 4.2.3. Recycle -- 4.2.4. Downcycle, Decompose, Dispose -- 4.3. When Is Recycling Not the Answer? -- 4.3.1. Iron and Steel -- 4.3.2. Cement -- 4.3.3. Plastics -- 4.3.4. Paper -- 4.3.5. Aluminum -- 4.3.6. Clothing and Textiles -- 4.3.7. Glass -- 4.4. Discussion -- References -- Chapter 5: Material and product-centric recycling: design for recycling rules and digital methods -- 5.1. Introduction -- 5.2. Recyclability Index and Ecolabeling of Products -- 5.3. DfR Rules and Guidelines -- 5.4. Product-Centric Recycling -- 5.4.1. Dynamics of the CE and the Urban Mine -- 5.4.2. Some First Principles of Recycling -- 5.4.3. Digital Twinning of Systems -- 5.5. Examples of Recycling System Simulation -- 5.5.1. SuperLightCar -- 5.5.2. Recycling of Waste Electrical and Electronic Equipment -- 5.5.3. Recycling of Photovoltaic (PV) Cells -- 5.5.4. Recycling of Rare Earth Magnets -- 5.6. Summary -- 5.7. Future Challenges -- Acknowledgements -- References -- Additional Reading -- Chapter 6: Developments in collection of municipal waste -- 6.1. Introduction -- 6.2. Definitions and Models -- 6.2.1. Definitions. , 6.2.2. Integrated Sustainable Waste Management -- 6.2.2.1. Institutions and Policies -- 6.2.2.2. Financial Sustainability -- 6.2.2.3. Inclusivity -- 6.3. A Global Picture of SWM -- 6.3.1. Volumes -- 6.3.2. Waste Composition -- 6.3.3. Waste Collection -- 6.3.4. Waste Disposal -- 6.3.5. Administration, Operations, Financing, and Cost Recovery -- 6.4. Collection and Recovery Systems -- 6.4.1. Collection Systems -- 6.4.2. Collection Methods -- 6.4.3. Treatment of MSW -- 6.5. Future Developments -- 6.5.1. Societal Development and Pressure -- 6.5.2. Sustainable Impact -- 6.5.3. Value Chain Integration -- 6.6. Conclusion and Outlook -- References -- Chapter 7: The path to inclusive recycling: Developing countries and the informal sector -- 7.1. Introduction -- 7.2. Definition and Links With the Formal Sector -- 7.3. Informal Waste Tire Recycling: Challenges and Opportunities -- 7.4. Approaches Towards Inclusive Recycling -- 7.4.1. Cooperation With South African Informal E-Waste Sector Workers -- 7.4.2. Formal Coworking Space in India for Informal Workers -- 7.5. Policies and Standardization Developments for Inclusive Recycling -- 7.5.1. ISO Standards -- 7.5.1.1. ISO IWA 19:2017 -- 7.5.1.2. ISO 59014 -- 7.5.2. Ghana Technical Guidelines -- 7.6. Conclusion and Outlook -- References -- Part 2: Recycling from a product perspective -- Chapter 8: Physical separation -- 8.1. Introduction -- 8.2. Properties and Property Spaces -- 8.3. Breakage -- 8.4. Particle Size Classification -- 8.4.1. Screens -- 8.4.2. Static Size Separators -- 8.4.3. Dynamic Size Separators -- 8.5. Gravity Separation -- 8.5.1. Jigs -- 8.5.2. Shaking Tables -- 8.5.3. Dense Media Separation -- 8.6. Flotation -- 8.7. Magnetic Separation -- 8.7.1. Low-Intensity Separation -- 8.7.2. High-Intensity Separation -- 8.8. Eddy Current Separation -- 8.9. Electrostatic Separation -- 8.10. Sorting. , 8.11. Conclusion -- References -- Chapter 9: Sensor-based sorting -- 9.1. Mechanical Treatment of Waste -- 9.2. Principle of Sensor-Based Sorting -- 9.2.1. Construction Types -- 9.2.2. Working Modules of SBS -- 9.3. Requirements for Optimal Sorting Results -- 9.4. Available Sensors -- 9.4.1. Color Detection -- 9.4.1.1. RGB Sensors -- 9.4.1.2. Hyperspectral Imaging -- 9.4.2. Near-infrared Sensor -- 9.4.3. 3D-Laser Triangulation -- 9.4.4. Laser-Induced Breakdown Spectroscopy -- 9.4.5. X-Ray Sensors -- 9.4.5.1. X-Ray Fluorescence -- 9.4.5.2. X-Ray Transmission -- 9.4.6. Induction Sensors -- 9.4.7. Other Sensors -- 9.5. Application of Different Sensors in Recycling -- 9.6. Recent Developments -- 9.7. Outlook -- References -- Chapter 10: Mixed bulky waste -- 10.1. Introduction -- 10.2. The Circular Process for Mixed Bulky Waste -- 10.3. Conditions for Economically Viable Sorting -- 10.4. Sorting of Mixed Bulky Waste -- 10.5. Sorting Process -- 10.5.1. Large Fraction Separation -- 10.5.2. Light Fraction Processing -- 10.5.3. Heavy Fraction Processing -- 10.6. Recycling Efficiency -- 10.7. Conclusion and Outlook -- Reference -- Chapter 11: Packaging -- 11.1. Introduction -- 11.2. Packaging Waste -- 11.3. Composition -- 11.4. Recovery and Recycling -- 11.5. Collection and Recovery Schemes -- 11.5.1. Reduce and Refuse -- 11.5.2. Reuse -- 11.5.3. Separate Collection -- 11.5.4. Mixed Collection -- 11.6. Conclusion and Outlook -- References -- Chapter 12: End-of-life vehicles -- 12.1. Introduction -- 12.2. Vehicle Composition -- 12.3. Recycling Chain -- 12.3.1. Deregistration and Dismantling -- 12.3.2. Shredding -- 12.3.3. Postshredder Treatment -- 12.4. Recycling of Automotive parts -- 12.4.1. Traction Battery -- 12.4.1.1. Pretreatment of LIBs -- 12.4.1.2. Second Use of LIBs -- 12.4.2. Tires -- 12.5. Recycling of Automotive Fluids -- 12.5.1. Oils. , 12.5.2. Brake Fluid -- 12.5.3. Engine Coolant -- 12.5.4. Windscreen Wash Fluid -- 12.5.5. Fuel Mixture -- 12.5.6. Air Conditioning Refrigerant -- 12.6. Automotive Shredder Residue -- 12.6.1. Composition -- 12.6.2. Recycling Technologies -- 12.6.3. Final Products -- 12.7. Future Developments and Outlook -- 12.8. Conclusions -- References -- Further Reading -- Chapter 13: Electrical and electronic equipment (WEEE) -- 13.1. Introduction -- 13.1.1. Policy Development -- 13.1.2. Objectives of E-Waste Management -- 13.2. Waste Characterization -- 13.3. Recycling Chain and Technologies -- 13.3.1. Collection and Transport -- 13.3.2. Manual Preprocessing -- 13.3.3. Mechanical Preprocessing -- 13.3.4. End-Processing and Disposal -- 13.4. Future Developments -- 13.4.1. The Miniaturization Paradox -- 13.4.2. Critical Raw Materials -- 13.4.3. Basel Convention vs Circular Economy -- 13.4.4. Towards a Global Harmonization of Extended Producer Responsibility -- 13.4.5. Responsible Sourcing of Secondary Raw Materials -- 13.5. Conclusions -- References -- Chapter 14: Photovoltaic and wind energy equipment -- 14.1. Introduction -- 14.2. Wind Turbines -- 14.2.1. Nacelle -- 14.2.2. Rotor Blades -- 14.3. Photovoltaic Modules -- 14.3.1. Si-Based PV -- 14.3.2. CdTe-Based PV -- 14.4. Wind Turbine Recycling -- 14.4.1. Fiberglass and Polymers Composites -- 14.4.2. Electric and Electronic Components of the Nacelle -- 14.4.3. Rare Earth Magnets From the Nacelle -- 14.5. PV Recycling -- 14.5.1. Collection -- 14.5.2. c-Si Module Recycling -- 14.5.3. CdTe Module Recycling -- 14.6. Future Developments -- 14.6.1. Wind Energy -- 14.6.2. PV -- 14.7. Key Issues and Challenges -- 14.7.1. Wind Turbines and Their Recycling -- 14.7.2. PV Modules and Their Recycling -- 14.8. Conclusions and Outlook -- References -- Chapter 15: Buildings -- 15.1. The Why: Buildings and Circularity. , 15.2. The How and Who: A Framework.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...