GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Natural gas-Geology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (434 pages)
    Edition: 1st ed.
    ISBN: 9780323854665
    Series Statement: The Fundamentals and Sustainable Advances in Natural Gas Science and Eng Series
    Language: English
    Note: Intro -- Sustainable Geoscience for Natural Gas SubSurface Systems -- Copyright -- Contents -- Contributors -- Preface -- About The Fundamentals and Sustainable Advances in Natural Gas Science and Engineering Series -- About this volume 2: Sustainable geoscience for natural gas subsurface systems -- Chapter One: Pore-scale characterization and fractal analysis for gas migration mechanisms in shale gas reservoirs -- 1. Introduction -- 2. Pore-scale characterization from nitrogen adsorption-desorption data -- 3. Pore-scale characterization from SEM data -- 4. Definitions of fractal parameters -- 5. Fractal analysis of nitrogen adsorption isotherms -- 6. Fractal analysis of SEM images -- 7. Pore-scale and core-scale gas transport mechanisms -- 7.1. Gas transport in a single capillary -- 7.2. Gas transport in fractal porous media -- 8. Conclusions -- Acknowledgments -- References -- Chapter Two: Three-dimensional gas property geological modeling and simulation -- 1. Introduction -- 2. 3D modeling -- 3. Geological conditions of gas reservoirs -- 4. Typical earth data used in modeling -- 5. Modeling methods -- 6. Structural modeling -- 7. Facies modeling -- 8. Petrophysical modeling -- 9. Geomechanical modeling -- 10. Volumetric modeling -- 11. Case study -- 12. 3D structural modeling -- 13. 3D facies modeling -- 14. 3D petrophysical modeling -- 15. 3D geomechanical modeling -- 16. Summary -- References -- Chapter Three: Acoustic, density, and seismic attribute analysis to aid gas detection and delineation of reservoir properties -- 1. Introduction -- 2. Natural gas reservoirs detection -- 2.1. Poststack seismic attributes analysis -- 2.1.1. Acoustic and velocity attributes: Direct gas indicators -- 2.1.2. Bottom simulating reflector -- 2.1.3. Gas chimneys -- 2.1.4. Acoustic impedance -- 2.1.5. Other seismic attributes. , 2.2. Prestack seismic attributes analysis -- 3. Delineation and characterization of natural gas reservoirs -- 3.1. Porosity -- 3.2. Pore types -- 3.3. Water saturation -- 3.4. Hydraulic and electrical flow units -- 3.5. Rock mechanical properties -- 4. Summary -- References -- Chapter Four: Integrated microfacies interpretations of large natural gas reservoirs combining qualitative and quantitati ... -- 1. Introduction -- 2. Fundamental concepts and key principles -- 2.1. Principals of petrographic analysis -- 2.2. Thin section analysis -- 2.3. SEM analysis -- 2.4. The evolution of microfacies analysis -- 3. Advanced research and detailed techniques -- 3.1. Image preparation via histogram equalization -- 3.2. Grain size determination and grain-size distributions -- 3.3. Edges, features shapes, and boundaries detection -- 3.4. Applying image arithmetic to enhance features of specific interest -- 3.5. Gamma correction for birefringent minerals -- 3.6. K-means clustering to isolate and quantify two-dimensional porosity and specific surface area -- 3.7. Nearest neighbor (kNN) classifier facilitates features segmentation -- 4. Gas field case studies -- 4.1. South pars field -- 4.2. Salman field -- 4.3. Shah Deniz field -- 5. Summary -- Declarations -- References -- Chapter Five: Assessing the brittleness and total organic carbon of shale formations and their role in identifying optimu ... -- 1. Introduction -- 2. Fundamental concepts -- 2.1. Estimating shale brittleness and ``fracability´´ -- 2.2. Estimating total organic carbon from well-log data -- 3. Advanced methods -- 3.1. Machine learning approaches for predicting shale brittleness and TOC -- 3.2. Advantages of transparency and correlation-free machine learning algorithms -- 3.3. Optimizers suitable for TOB stage 2 predications. , 3.4. Measures of BI and TOC prediction accuracy assessed for shale assessment -- 4. Case study: TOB machine learning to predict shale brittleness and TOC -- 4.1. Characterization of two lower Barnett Shale Wells sections -- 4.2. Results of TOB predictions of BIml and TOC for lower Barnett Shale Wells -- 5. Summary -- Declarations -- References -- Chapter Six: Shale kerogen kinetics from multiheating rate pyrolysis modeling with geological time-scale perspectives for ... -- 1. Fundamental concepts -- 1.1. Organic-rich shales and their gas and oil generation potential -- 1.2. Types of kerogen and their associated gas and oil generation reactions -- 1.3. Pyrolysis of organic-rich shales, kerogens and bitumens -- 2. Advanced techniques and applications -- 2.1. Modeling kerogen kinetics with the Arrhenius equation and its integral -- 2.2. Procedure for matching pyrolysis S2 curves with calculated TTIARR and SigmaTTIARR values -- 2.3. Controversy over methods used to fit multiheating rate shale pyrolysis S2 curves -- 2.4. Combining reaction peaks generated by various E-A combinations -- 2.5. Limitations of single-heating rate pyrolysis experiments -- 3. Case study kinetic models for immature Duvernay shale Western Canada -- 3.1. Case study overview -- 3.2. Late Devonian Duvernay shale (Western Canada) -- 3.3. Immature Duvernay shale sample SAP for reaction kinetic evaluations -- 4. Summary -- Declarations -- References -- Chapter Seven: Application of few-shot semisupervised deep learning in organic matter content logging evaluation -- 1. Introduction -- 2. Methodology -- 2.1. ELM-SAE model structure -- 2.2. Stacked ELM-SAE -- 2.3. RBM -- 2.4. DBM -- 2.5. Bagging algorithm -- 2.6. Network structure of the integrated deep learning model (IDLM) -- 3. Samples and experiments -- 3.1. Data sets and descriptions -- 3.2. Training. , 3.2.1. Determination of hyperparameter (SELM-SAE) -- 3.2.2. Determination of hyperparameter (DBM) -- 3.2.3. Hyperparameter determination results for models including bagging -- 4. Results: TOC Prediction comparisons for IDLM and other models -- 5. Conclusions -- Acknowledgment -- References -- Chapter Eight: Microseismic analysis to aid gas reservoir characterization -- 1. Introduction -- 2. Principle and workflow of microseismic monitoring -- 2.1. Basic principles -- 2.2. Technical workflow -- 3. Advanced processing and interpretation techniques -- 3.1. Processing -- 3.1.1. Microseismic detection and location -- 3.1.2. Source mechanism inversion -- 3.1.3. Stress inversion -- 3.2. Interpretation -- 3.2.1. Reservoir interpretation -- 3.2.2. Microseismic geomechanics -- 4. Case studies -- 4.1. Shale hydraulic fracturing -- 4.2. Coal-bed methane reservoir -- 5. Summary -- Declarations -- Acknowledgments -- References -- Chapter Nine: Coal-bed methane reservoir characterization using well-log data -- 1. Introduction -- 2. Fundamental concepts pertaining to CBM -- 2.1. Estimating coal composition and rank using well-log data -- 2.2. Estimating gas content, potential flow rates and recovery from coals with well-log data -- 3. Advanced assessment of coal bed methane properties -- 3.1. Coal structure and fracability -- 3.2. A geomechanically derived brittleness index -- 3.3. Horizontal stress regime influence on coal seam characteristics -- 3.4. Assessing the structure of coal and its influences on fracability -- 3.5. The presence of existing natural fractures improves coal fracability -- 3.6. Machine learning to improve coal property predictions -- 4. Case study: Assessing coal fracability based on well-log information -- 4.1. Application of fracability indicators to actual coal seams. , 4.2. Application of geomechanical coefficients to classify coal structure -- 5. Summary -- Declarations -- References -- Chapter Ten: Characterization of gas hydrate reservoirs using well logs and X-ray CT scanning as resources and environmen ... -- 1. Introduction -- 2. Fundamental concepts and key principles -- 2.1. Well logging -- 2.2. X-ray CT scanning -- 2.2.1. Gas hydrate pore habits in hydrate-bearing sediments -- 2.2.2. Basic physical properties in hydrate-bearing sediments -- 3. Advanced research/field applications -- 3.1. Well logging and X-ray CT scanning combination -- 3.2. X-ray CT based characterization of pore fractal characteristics in hydrate-bearing sediments -- 3.2.1. Maximal pore diameter -- 3.2.2. Pore area fractal dimension -- 3.2.3. Tortuosity fractal dimension -- 4. Case studies -- 4.1. Archie's saturation exponent for well-log data interpretation -- 4.2. Hydraulic permeability reduction in hydrate-bearing sediments -- 5. Summary and conclusions -- Acknowledgments -- Declarations -- References -- Chapter Eleven: Assessing the sustainability of potential gas hydrate exploitation projects by integrating commercial, en ... -- 1. Fundamental concepts -- 1.1. The potential and challenges facing natural gas hydrates as resources for development -- 1.1.1. Technical considerations -- 1.1.2. Economic, environmental, infrastructure, and social considerations -- 1.2. Multicriteria decision analysis (MCDA) techniques -- 1.2.1. MCDA techniques typically applied -- 1.2.2. ELECTRE -- 1.2.3. TOPSIS (the order of preference by similarity to an ideal solution) -- 2. Advanced TOPSIS techniques that incorporate uncertainty -- 2.1. Crisp, fuzzy and intuitionistic mathematical alternatives -- 2.2. Fuzzy TOPSIS calculations -- 2.3. Fuzzy TOPSIS analysis incorporating objective entropy weighting. , 2.4. Intuitionistic Fuzzy TOPSIS (IFT) with and without entropy weight adjustments.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...