GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Multichannel seismic reflection  (1)
  • data processing  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 18 (1996), S. 729-739 
    ISSN: 1573-0581
    Keywords: Bathymetry ; mapping ; multibeam echosounder ; data processing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The common approach to analysing data collected with multibeam and sidescan sonars is to visually interpret charts of contoured bathymetry and mosaics of seabed images. However, some of the information content is lost by processing the data into charts because this involves some averaging; the analysis might uncover more information if done on the data at an earlier stage in the processing. Motivated by this potential, I have created a software system which can be used to analyse data collected with Simrad EM1000 (shallow water) and EM12 (deep water) multibeam sonars, as well as to generate bathymetry contour charts and backscatter mosaics. The system includes data preprocessing, such as navigation filtering, depth filtering (removal of outlying values), and amplitude mapping using the multibeam bathymetry to correctly position image pixels across the swath. The data attributes that can be analysed include the orientation and slope of the seafloor, and the mean signal strength for each sounding. To determine bathymetry attributes such as slope, the soundings across a number of beams and across a series of pings are grouped and a least-squares plane fitted to them. Bathymetric curvature is obtained by detrending the grouped data using the least-squares plane and fitting a paraboloid to the residuals. The magnitudes and signs of the paraboloid's coefficients reveal depressions and hills and their orientations. Furthermore, the seafloor geology can be classified using a simple combination of these attributes. For example, flat-lying sediments can be classified where the backscatter, slope and curvature fall below specified values.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q03004, doi:10.1029/2010GC003347.
    Description: Understanding how pelagic sediment has been eroded, transported, and deposited is critical to evaluating pelagic sediment records for paleoceanography. We use digital seismic reflection data from an Integrated Ocean Drilling Program site survey (AMAT03) to investigate pelagic sedimentation across the eastern-central equatorial Pacific, which represents the first comprehensive record published covering the 18–53 Ma eastern equatorial Pacific. Our goals are to quantify (1) basin-hill-scale primary deposition regimes and (2) the extent to which seafloor topography has been subdued by abyssal valley-filling sediments. The eastern Pacific seafloor consists of a series of abyssal hills and basins, with minor late stage faulting in the basement. Ocean crust rarely outcrops at the seafloor away from the rise crest; both hills and basins are sediment covered. The carbonate compensation depth is identified at 4440 m by the appearance of acoustically transparent clay intervals in the seismic data. Overall, we recognized three different sedimentation regimes: depositional (high sedimentation rate), transitional, and minimal sedimentation (low sedimentation rate) regimes. In all areas, the sedimented seafloor mimics the underlying basement topography, although the degree to which topography becomes subdued varies. Depositional regimes result in symmetric sedimentation within basins and subdued topography, whereas minimal sedimentation regimes have more asymmetric distribution of sediments within topographic lows and higher seafloor relief. Regardless of sedimentation regime, enhanced sediment deposition occurs within basins. However, we observe that basin infill is rarely more than twice as thick as sediment cover over abyssal hills. If this variation is due to sediment focusing, the focusing factor in the basins, as measured by 230Th, is no more than a factor of ∼1.3 of the total vertical particulate rain.
    Description: This research is supported by NSF grants OCE‐07253011 and OCE‐0851056 (M. Lyle and M. Tominaga) and NERC grant NE/C508985/2 (N. C. Mitchell).
    Keywords: Equatorial Pacific ; Multichannel seismic reflection ; Ocean Drilling Program
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...